

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A NETWORK ADDRESS TRANSLATION
MECHANISM OVER IPV6

by

Trevor J. Baumgartner
Matthew D.W. Phillips

June 2004

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Implementation of a Network
Address Translation Mechanism Over IPv6

6. AUTHOR(S)Trevor J. Baumgartner & Matthew D.W. Phillips

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 Network Address Translation (NAT) for IPv4 was developed primarily to curb
overcrowding of the Internet due to dwindling global IP addresses; however, NAT
provides several other benefits. NAT can be used to mask the internal IP addresses of
an Intranet. IPv6, the emerging standard for Internet addressing, provides three times
the number of bits for IP addressing. While IPv6 does not need NAT for connectivity,
other NAT features such as address hiding are valuable. There is currently no NAT
implementation for IPv6.
 The focus of this research was the design and development of a NAT implementation
for IPv6. This implementation will be used within a multilevel testbed. In addition,
the NAT implementation developed here can facilitate the Department of Defense (DoD)
transition to IPv6 planned for 2008 by providing services currently not available for
IPv6.
 A working implementation of NAT for IPv6 within the Linux kernel has been produced.
The NAT development created here has been tested for support of the protocols of TCP,
UDP and ICMP for IPv6.

15. NUMBER OF
PAGES

270

14. SUBJECT TERMS Network Address Translation, NAT, IPv6, IPv4,
MYSEA, MLS, Common Criteria, Linux Source Code, Netfilter, Iptables,
Ip6tables

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF NETWORK ADDRESS TRANSLATION MECHANISM
OVER IPV6

Trevor J. Baumgartner

Ensign, United States Navy
B.S., United States Naval Academy, 2003

Matthew D.W. Phillips

Ensign, United States Navy
B.S., United States Naval Academy, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2004

Authors: Trevor J. Baumgartner

Matthew D.W. Phillips

Approved by: Dr. Cynthia E. Irvine

Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Dr. Peter J. Denning
Chairman, Department of Computer
Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Network Address Translation (NAT) for IPv4 was

developed primarily to curb overcrowding of the Internet

due to dwindling global IP addresses; however, NAT provides

several other benefits. NAT can be used to mask the

internal IP addresses of an Intranet. IPv6, the emerging

standard for Internet addressing, provides three times the

number of bits for IP addressing. While IPv6 does not need

NAT for connectivity, other NAT features such as address

hiding are valuable. There is currently no NAT

implementation for IPv6.

The focus of this research was the design and

development of a NAT implementation for IPv6. This

implementation will be used within a multilevel testbed. In

addition, the NAT implementation developed here can

facilitate the Department of Defense (DoD) transition to

IPv6 planned for 2008 by providing services currently not

available for IPv6.

A working implementation of NAT for IPv6 within the

Linux kernel has been produced. The NAT development created

here has been tested for support of the protocols of TCP,

UDP and ICMP for IPv6.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PURPOSE OF STUDY2
B. OVERVIEW OF CHAPTERS3

1. Chapter II, "Network Address Translation
Protocol in IPv4"3

2. Chapter III, "Internet Protocol, Version 6" ...4
3. Chapter IV, "Monterey Security Architecture" ..4
4. Chapter V, "Common Criteria Assurance Level

Exploration"4
5. Chapter VI, "Development of NAT in IPv6"4
6. Chapter VII, "Conclusion"5

II. NETWORK ADDRESS TRANSLATION PROTOCOL IN IPV47
A. BACKGROUND AND ANALYSIS7

1. Internet Protocol, Version 47
a. Background Information7
b. IP Header Structure9
c. Security11
d. Addressing12

2. Network Address Translation13
a. Basic NAT14

(1) Address assignment 15
(2) Address translation and lookup16
(3) Address unbinding 16

b. Network Address Port Translation (NAPT) ...17
c. Bi-directional NAT18
d. Twice NAT19
e. Multihomed NAT20

B. NAT IN THE LINUX OS20
1. Netfilter20
2. Kernel-Space Iptables25
3. User-Space Iptables26

C. MODULE SEQUENCE MAPPING27
1. Kernel-Space Trace27
2. User-Space Trace29

III. INTERNET PROTOCOL, VERSION 631
A. BACKGROUND AND ANALYSIS31

1. Introduction31
2. Packet Header Format34
3. Addressing Scheme35
4. Address Allocation37

B. SECURITY ..38

 viii

1. Existing Security Mechanisms38
2. Emerging Technologies39

C. FEATURES PROVIDED BY NAT FOR IPV639
1. Address Hiding39
2. Dynamic Address Assignment40
3. Transitioning Mechanism41
4. Tunneling41
5. Connection Limiting42

D. DESIRED NAT FEATURES NOT PROVIDED BY IPV643
E. IPV6 SUPPORT WITHIN THE LINUX KERNEL44

1. Initialization44
2. User-Space Functionality45
3. Kernel-Space Functionality46

IV. MONTEREY SECURITY ARCHITECTURE47
A. INTRODUCTION47
B. ARCHITECTURE48
C. IPV6 NAT TESTBED COMPONENTS49

1. MYSEA Server51
2. MYSEA Trusted Path Extension51
3. MYSEA Client53

V. COMMON CRITERIA ASSURANCE LEVEL EXPLORATION55
A. COMMON CRITERIA BACKGROUND55
B. EVALUATION PROCESS56
C. EAL5 REQUIREMENTS58

1. Installation, Generation and Start-Up59
2. Administrator Guidance59
3. Development Security59
4. Functional Tests60

VI. DEVELOPMENT OF NAT IN IPV661
A. CONNECTION TRACKING61
B. PORTING METHODOLOGY62

1. User-Space Iptables63
2. Connection Tracking and Netfilter64
3. NAT Code64

C. PORTING DIFFICULTIES66
1. IPv6 Address Structure66
2. Checksum Calculation Ordering67
3. Checksum Calculations Algorithm70

D. DEBUGGING ...71
E. TESTING ...73

VII. CONCLUSION & FUTURE WORK77
A. ANALYSIS OF THE INTEGRATED NAT77
B. FUTURE ALTERNATE IMPLEMENTATION DESIGN77
C. OTHER FUTURE WORK79

 ix

D. SUMMARY ...80

LIST OF REFERENCES ..81

APPENDIX A. CHANGE CONTROL PROCEDURES85

APPENDIX B. SPECIFICATION DOCUMENT89

APPENDIX C. SOURCE CODE99

APPENDIX D. TESTING RESULTS197

APPENDIX E. USER MANUAL221

APPENDIX F. COMMON CRITERIA231

APPENDIX G. INSTALLATION GUIDE241

INITIAL DISTRIBUTION LIST247

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. OSI 7-Layer Model8
Figure 2. IPv4 Header ..9
Figure 3. Bitwise / Dotted-Decimal.12
Figure 4. Private IP Address Range13
Figure 5. IPv4 NAT Diagram15
Figure 6. NAPT Example18
Figure 7. Twice NAT Example20
Figure 8. Netfilter Packet Flow25
Figure 9. IPv6 Header32
Figure 10. MYSEA Architecture49
Figure 11. MYSEA IPv6 NAT Testbed50
Figure 12. Layer 4 Pseudo-header for IPv668
Figure 13. IPv4 Function manip_pkt()69
Figure 14. IPv6 Function manip_pkt()70
Figure 15. Netfilter Packet Flow93
Figure 16. MYSEA IPv6 NAT Testing Environment197

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. IPv6 Address Space Allocation37
Table 2. Assurance Evaluation Comparison56
Table 3. EAL5 Fulfilled Requirements By This Project58
Table 4. EAL5 Requirements231

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AH Authentication Header
ALG Application Level Gateway
CC Common Criteria
CM Configuration Management
COTS Commercial Off-the-shelf
DARPA Defense Advanced Research Projects Agency
DNAT Destination Network Address Translation
DoD Department of Defense
EAL Evaluation Assurance Level
ESP Encapsulating Security Protocol
FTP File Transfer Protocol
ICMP Internet Control Message Protocol
IKE Internet Key Exchange
IP Internet Protocol
IPsec Internet Protocol security
IPSO Internet Protocol Security Options
IPv4 Internet Protocol version four
IPv6 Internet Protocol version six
IT Information Technology
LAN Local Area Network
MLS Multilevel Security
MTU Maximum Transmission Unit
MYSEA Monterey Security Architecture
NAPT Network Address Port Translation
NAT Network Address Translation
NCW Network Centric Warfare
PP Protection Profile
RFC Request For Comments
SNAT Source Network Address Translation
ST Security Target
TCM Trusted Channel Modules
TCP Transmission Control Protocol
TOE Target of Evaluation
TPE Trusted Path Extension
TSF Target of Evaluation Security Functions
UDP User Datagram Protocol
VPN Virtual Private Network

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

We would like to thank our thesis advisor, Dr. Cynthia

Irvine, for the motivation and immense assistance in

completing this thesis. We appreciate the technical

guidance and support given through all stages of this

endeavor.

Thanks also to our second advisor Thuy Nguyen for

putting in long, hard hours to assist us. She went above

and beyond expectations by spending many hours at home and

on the weekends in the lab, in order to ensure this project

was completed.

Many thanks to Jean Khosalim for his Linux expertise

and his assistance. He also spent many hours on the

weekends in the lab to assist us in our work. Without him

we would still be stuck in a kernel trap.

Amy and Jennifer, we would like to thank you for all

of the love and support you have given us. Without your

patience and understanding we would never have been able to

complete this thesis.

Finally, we would like to thank our parents for

everything they have given us. The love, support, and

understanding have made us who we are today. Thank you

again for everything.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Internet Protocol version four (IPv4), was accepted

for military network use by the Department of Defense in

1981. [IP] At the time of its inception, the DARPA Net was

a connectivity testbed. As it expanded and its popularity

grew, it became the commercialized Internet still in use

today. This expansive network is founded on a host-based

addressing architecture that assigns a 32-bit address to

each connected system. In the 1980’s, the expandability of

the 32-bit address used in IPv4 was not a consideration due

to the limited use of the protocol, primarily for

government and academic purposes. Now, with the expanding

growth of the Internet, it is said that the IPv4 address

space will be outdated by 2010. [NGI] This imminent address

exhaustion drives the need for a new protocol that will

allow for a greater number of addresses and a modular

approach to security.

Network Address Translation (NAT) was introduced as a

temporary solution to the rapidly overcrowding address

space in IPv4. NAT allows an entire network of systems to

use a single IP address or pool of IP addresses to access

the external Internet. The NAT mechanism does this by

replacing the true source address of the internal system

with the border address in all outgoing datagrams.

Furthermore, the mechanism tracks the connection between

internal and external systems in order to maintain

addressing information for all incoming datagrams.

Internet Protocol version six (IPv6) is the solution

to the address space problem. Instead of 32 bits for

addressing, this new protocol uses 128 bits, allowing for a

2

theoretical maximum of 2128 addresses. Since Network Address

Translation (NAT) was designed to reduce overcrowding in

IPv4, many believe that this functionality will not be

needed with IPv6. The purpose of this thesis is to provide

evidence that certain benefits provided only by NAT are

still necessary as well as to create a working

implementation of it.

A. PURPOSE OF STUDY

The popular belief is that since overcrowding is not

an issue in IPv6, NAT functionality will not be needed.

However, NAT has two key functionalities aside from address

space expansion that are beneficial from a security

perspective. First, by using the NAT mechanism, one is able

to mask the IP addresses of internal systems. NAT does this

by replacing the source address of an outgoing datagram

with another address from a pool of IP addresses or a

single constant IP address. The NAT device keeps track of

this connection and alters all incoming datagrams destined

to the border NAT address to reflect the true internal IP

address. Second, the NAT mechanism also hides the internal

structure of an intranet since all connections to the

Internet must first pass through the NAT border device.

This forces all external devices to only detect the NAT

border device: it is not possible to diagram the internal

topology of the network.

It is for these security benefits that this research

is being conducted. The goals of this research are two-

fold. First, the benefits, drawbacks and feasibility of an

IPv6 NAT implementation were examined. This is advantageous

to both this thesis in providing direction as well as to

future research by providing a solid framework of

3

background information, design implementation and future

recommendations. Second, this project has produced a

working implementation for NAT over IPv6. This

implementation was done through a modified Linux 2.6.5

kernel designed to support connection tracking in IPv6.

There exist multiple benefits of this research. It

contributes to the DoD initiative to transition to IPv6

from IPv4 by FY2008. [MEMO] Also, research conducted into

IPv6 transition mechanisms will aid the construction of

hybrid networks that support both IPv4 and IPv6 to ease the

eventual transition to IPv6. This research also supports

the Network Centric Warfare (NCW) model and shipboard

operations by providing the network security benefit of

address hiding and internal network structure masking. NAT

can also be used to reduce the cost of leasing a range of

IP addresses by allowing an entire LAN to operate on as few

as one leased IP address. Finally, NAT for IPv6 contributes

to the implementation of high assurance multilevel security

systems, such as MYSEA, for use by coalitions through its

application in a multilevel testbed.

B. OVERVIEW OF CHAPTERS

This section contains a brief overview of the

subsequent chapters.

1. Chapter II, “Network Address Translation Protocol
in IPv4”

This chapter provides background information on both

IPv4 and NAT. The first part discusses the IPv4 protocol

including general background information, its header

structure, security issues and the addressing scheme. The

second part of the chapter is to familiarize the reader

with NAT by explaining the mechanisms used by the multiple

types of NAT and the benefits of each.

4

2. Chapter III, “Internet Protocol, Version 6”

Chapter III explains the background of IPv6 as well as

its header format, addressing scheme and address

allocation. This chapter also explores the existing

security features within IPv6 in addition to emerging

technologies. Furthermore, it contains a comparison between

the networking and security features provided by NAT for

IPv6 and the security features provided by NAT that are

desired but not provided by IPv6. Finally, this chapter

describes the existing IPv6 support within the current

Linux 2.6.5 kernel.

3. Chapter IV, “Monterey Security Architecture”

This chapter explains the necessity for systems to

provide multilevel security and the creation of the

Monterey Security Architecture (MYSEA) to address those

needs. It outlines the design of all relevant components

within the architecture and their implementation within the

IPv6 NAT testbed.

4. Chapter V, “Common Criteria Assurance Level
Exploration”

Chapter V provides the reader with background

regarding the Common Criteria. It also describes the

evaluation process for IT products and explores the

requirements necessary for an assurance evaluation at EAL5.

This is done through the framework of the IPv6 NAT

implementation created in this project.

5. Chapter VI, “Development of NAT in IPv6”

This chapter summarizes the development process used

to implement NAT for IPv6 in conjunction with this thesis.

It explains the methodology used to port the existing IPv4

NAT code for use with IPv6. It details the major

programming difficulties encountered during the porting

5

process and how they were resolved. It also explains the

debugging process used, as well as functionality testing of

the resulting implementation.

6. Chapter VII, “Conclusion”

Chapter VII gives an analysis of the IPv6 NAT

implementation as it is integrated within the Linux kernel.

It also provides design implementation ideas for possible

future developments.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. NETWORK ADDRESS TRANSLATION IN IPV4

Network Address Translation (NAT) has served to

increase available IP address space as originally noted in

1994 [TNAT]. This chapter contains a summary of current

NAT implementations and the functionalities provided by

NAT. The chapter then examines NAT and related

functionalities, as implemented in Red Hat 9.0, the Linux

platform on which NAT for IPv6 will be developed. Since

NAT has not yet been developed for IPv6, any reference to

NAT, unless explicitly stated, refers to NAT for IPv4.

A. BACKGROUND AND ANALYSIS

This section presents an overview of IPv4, its

structure and addressing scheme. This section also provides

an overview of NAT.

1. Internet Protocol, Version 4

a. Background Information

Today’s current Internet Protocol, Version 4

(IPv4) was specified in 1981 with RFC 791. [IP] The IP

protocol resides at layer 3 of the OSI 7-layer model (see

Figure 1) which is responsible for the management of

network connections. [OSI]

8

Figure 1. The OSI 7-layer Model [OSI]

The purpose of layer 3, or where IP services are

implemented, was to allow hosts on different network

topologies to have a standard means of transporting data

packets to each other across the Internet. Each host would

have a unique IP address, almost like a mailing address, to

distinguish it from all of the other hosts connected to the

Internet. IPv4 performs two main functions: addressing and

fragmentation. The purpose for addressing is obvious

enough, because without a unique address routers would be

unable to determine the intended destination for each

packet. Fragmentation may not seem as necessary until one

realizes the myriad of networks and respective standards

that exist. Ethernet has a maximum transmission unit (MTU)

size of 1492 bytes, while a Token Ring can be configured to

have an MTU of 2046. Other layer 2 protocols have other MTU

9

sizes. [MTU] Thus, for a Token Ring packet to traverse an

Ethernet topology, it must be fragmented into two Ethernet

packets. In addition to addressing and fragmentation, IP

allows for error reporting through the use of the Internet

Control Message Protocol (ICMP). [ICMP SPEC]

b. IP Header Structure

IP headers contain all of the IP addressing,

transportation, and processing information for each packet.

The IP header is preceded by a layer two header and

information dependant upon the networking standard

(Ethernet, Token Ring, etc.), and is followed by the packet

payload. Figure 2 below, from RFC 791, displays an example

IPv4 header.

 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Protocol | Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Options | Padding |
 +-+

Figure 2. IPv4 Header

 The 192 bit header above displays both the

bit count and the respective field name. If laid out in a

sequential, linear fashion the header would read from left

to right, top to bottom. What follows is the bit length of

each field and a description, taken verbatim from RFC 791

[IP]:

- Version (4 bits): The Internet Protocol

version.

10

- IHL (4 bits): Internet Header Length; length

of the header in 32 bit words, indicating

where the data begins.

- Type of Service (8 bits): Indicates the

abstract quality of service parameters desired for

this packet.

- Total Length (16 bits): Length of the entire

packet (including header) in bytes.

- Identification (16 bits): A number assigned by

the sender to help with re-assembling fragmented

packets.

- Flags (3 bits): Control flags; Reserved (must

be 0), Don’t Fragment (0 means May Fragment), More

Fragments (0 means Last Fragment).

- Fragment Offset (13 bits): Indicates where, in

the un-fragmented packet, this fragment belongs;

measured in units of 64 bits, the first fragment

has offset zero.

- Time To Live (8 bits): TTL; indicates the

number of times a packet may be processed before

being destroyed; it is decremented by one every

time it is processed by a host, router, etc.; when

it reaches zero the packet is destroyed.

- Protocol (8 bits): Specifies the OSI layer

four (next level) protocol in the payload

following the IP header (ie, TCP, FTP, etc.).

- Header Checksum (16 bits): A checksum on the

IP header only; it is recomputed every time any of

the header values are altered.

11

- Source Address (32 bits): IP address where the

packet came from.

- Destination Address (32 bits): IP address

where the packet is ultimately destined.

- Options (varies): Various options for the IP

packet; its length varies because many of the

options have a varying size; the options field may

require padding so that it ends on a 32 bit

boundary. Below is a list of available options:

+ Security – Security and compartmentation

information

+ Loose Source Routing – Specifies a route

that, at some point, must be followed (other

nodes may be stopped at as well).

+ Strict Source Routing – Specifies a route

that must be exactly followed with no other

nodes stopped at.

+ Record Route – Record the IP address of

each node that processes the packet.

+ Stream ID – Carries a 16-bit SATNET

stream identifier through networks not

supporting the stream concept.

+ Internet Timestamp – Each forwarding node

inserts a timestamp into this field.

c. Security

The IPv4 standard relies on applications and

upper-level protocols to implement security features. The

security option described in the last section only provides

compartmentalization as a method of security and this is

12

only effective if systems that process the packet adhere to

the standard. The protocol allows the options field to

contain information regarding the intended compartment of

the packet. This field is for administrative purposes only

and does not support encryption or data security services.

However, these labels can support, as noted by the DoD

Internet Protocol Security Options (IPSO), a classification

scheme that enables packets to be labeled in a Multi-level

Secure (MLS) environment. As stated in RFC 1108, this

labeling system is designed for a classification system

rather than a cryptographic system. [DoD SOIP]

d. Addressing

IP addresses are 32 bits long and can be

represented in either bitwise or dotted-decimal notation.

Figure 3 gives an example of this:

10000000.00001111.11111111.00000000 = 128.15.255.0

Figure 3. Bitwise / Dotted-decimal

By using 32 bits for its address space, IPv4 is

limited to slightly more than 4.2 billion unique IP

addresses, which at the time of its conception was thought

to be sufficient; however, the world-wide Internet boom

quickly depleted IP addresses to the point that solutions

to the dwindling number of addresses had to be found. IPv4

has a addressing scheme that declared networks to be of

three different sizes, or classes. Class A networks, the

largest but also the least abundant, use the first 8 bits

of the 32 addressing bits for network identification and

the last 24 bits for host identification. Class B networks

use the first 16 bits for network identification, while

Class C networks use the first 24 bits. [IP]

13

Unfortunately, this scheme wastes addresses. Assume, for

example, that a software company is given a class C address

for its 100 computers. This would leave 156 IP addresses

unused by the company. To prevent such waste, IPv4 also

uses a classless addressing scheme, which essentially

creates networks using any number of leading bits through a

subnet mask. The subnet mask allows the class to be

partitioned by reserving a portion of the host address to

reference the underlying subnets created by the division of

the address space. Another important aspect of the IPv4

addressing scheme, defined by RFC 1918 [AAPI], is the

reservation of certain ranges of addresses for private

networking. These private network addresses are not

routable and cannot be used on the Internet, but may be

duplicated amongst any separate private networks. This is

the basis for the concept of NAT. There can be a seemingly

infinite number of networks with reserved address ranges

provided they are known to the public Internet by a

routable, global IP address or addresses. Figure 4 shows

the standard private IP address ranges that are not

globally viable:

Class A (private): 10.0.0.0 – 10.255.255.255
Class B (private): 172.16.0.0 – 172.16.255.255
Class C (private): 192.168.0.0 – 192.168.255.255

Figure 4. Private IP Address Ranges [AAPI]

2. Network Address Translation

According to RFC 2663 [IPNATTC], “The term ‘Network

Address Translator’ means different things in different

contexts.” This section will cover many of the different

14

forms and uses of NAT and will focus on basic NAT, since it

will be implemented in the thesis development.

a. Basic NAT

RFC 3022 [TNAT] specifies what most people refer

to when they use the term NAT. NAT was introduced as a

short-term solution to the Internet address space crowding

until long-term solutions with larger address spaces were

accepted. Its operation depends on adherence to the

private/public IP addressing scheme and the placement of

NAT functionality on all network devices that form the

border between the local area network using private IP

address space and the Internet. The local, private

addresses can be re-used by any other local area networks

not directly connected to the same border device, while the

global addresses are unique to the Internet. Besides the

primary advantage of effectively alleviating the strain on

the IP address pool, NAT also hides the local area network

topology (see Figure 5) from outside hosts. According to

RFC 3022, NAT also “takes advantage of the fact that a very

small percentage of hosts in a stub domain [(local area

network)] are communicating outside of the domain at any

given time.”

15

Figure 5. IPv4 NAT Diagram

What follows are the core steps to a basic NAT

translation, also referred to as traditional NAT or

outbound NAT, which only allows connections to be initiated

from the inside:

(1) Address assignment - NAT devices bind

globally unique and locally re-usable IP addresses at the

beginning of a network connection to the address fields of

IP packets. At this point, there are two possible

scenarios depending on whether the particular session is

receiving a static or dynamic address assignment. In the

case of static address assignment, the NAT device merely

looks up the pre-determined private/public address mapping

in its routing table and assigns IP addresses accordingly.

In the case of dynamic address assignment, the NAT device

selects a globally unique IP address from its address pool,

16

maps it to the local IP address and stores the connection

pairing in its NAT table.

(2) Address translation and lookup -

Anytime an outbound packet crosses the NAT device, the

source/destination IP address pair is looked up in the NAT

table to see if connection information exists. Once

connection information is either found or created (for new

sessions) the NAT device strips the private IP address off

of the packet and replaces it with a globally unique

address. Additionally, the NAT device must recalculate the

IP checksums, as well as, other fields that relate to the

original source/destination IP address. Incoming packets

have the selected global IP address as the destination

address. For these packets, the NAT device looks up the

globally unique IP address in the NAT table to determine

the corresponding local area network host, and forwards it

with the proper header modifications. All of these address

translations are intended to occur transparently to any of

the hosts engaged in a session. However, RFC 2663 states

that “the NAT function cannot by itself support all

applications transparently and often must co-exist with

application level gateways (ALGs) for this reason.”

[IPNATTC] Note that IPSec techniques that protect the

contents of IP headers and are intended to preserve

endpoint addresses of an IP packet cannot function with

NAT, as NAT’s primary role is to alter the IP address of an

IP packet. NAT will, however, work with Virtual Private

Networks (VPNs) and tunneling schemes that can tolerate the

alteration of the IP address fields.

(3) Address unbinding - A NAT device may

detect that communication between the local and remote

hosts has halted for some given amount of time using

17

various heuristics. When this happens, the NAT connection

expires for the corresponding address pair. The globally

unique address is returned to the pool of available

addresses for use with another mapping. New session

pairings will have to be assigned to all new connections as

they are encountered.

This basic series of events is what most people

refer to when they use the term NAT, however, there are

many NAT variants.

b. Network Address Port Translation (NAPT)

This NAT mechanism extends the concept of IP

address translation mappings to include the transport layer

ports. NAPT allows multiple sessions from multiple private

hosts to be mapped onto one globally unique IP address by

keeping track of the port numbers associated with the

global address. Essentially the mappings contained in the

NAT table are expanded to include the port number in

addition to the IP address pair. This mechanism allows more

unique combinations, thereby allowing multiple private

hosts to access the Internet using one global IP address.

For example, three different private IP hosts wish to start

an HTTP session with an outside server. The NAT device

would map each session to a specific IP/port pairing and

store them in its NAT table. An example of a NAPT mapping

using one globally unique IP address can be seen in Figure

6.

18

Private IP Address mapped to Globally Unique IP
Address/Port Combination

192.168.0.1:80 => 60.60.60.60:2500
192.168.0.1:23 => 60.60.60.60:6489
192.168.0.249:80 => 60.60.60.60:2502
10.255.255.255:1024 => 60.60.60.60:5009

Figure 6. NAPT Example

NAPT is a common instance of NAT that is used by

many users to setup home networks using the single IP

address provided by their Internet Service Provider. NAPT

can also be used in conjunction with traditional NAT to

further increase the amount of usable global space. For

example, assume that a network has two globally unique IP

addresses, by using NAPT, the network now has 2 (IP

addresses) * 65535 (ports per IP address) = 131070 unique

session mappings available.

c. Bi-directional NAT

Also known as two-way NAT, bi-directional NAT

allows sessions to be initiated from outside of the private

network, as well as, from the inside. Bi-directional NAT

employs a Domain Name Service – Application Level Gateway

(DNS-ALG) that alters DNS packets to reflect any static or

dynamic address mappings the NAT device will or has made.

When an outside host wishes to initiate a session with an

internal host, it sends a DNS query that ultimately reaches

the internal host DNS server, which returns a DNS reply.

If the internal host has either a statically mapped IP

address or both a statically mapped IP address and a port

enty, the DNS NAT device forwards the DNS reply.

Otherwise, the DNS reply is altered by the DNS-ALG and the

NAT device to reflect a dynamic mapping that the NAT device

supplies as the IP address of the internal host. Since the

19

mapping has been made, the external host may now initiate a

session with the internal host via the returned address,

assuming the reply occurs before the session information is

purged from the routing tables.

d. Twice NAT

Twice NAT modifies both the source and

destination address of an IP packet whenever it passes

through the NAT device. This is necessary when a private

network (improperly most of the time, sometimes on purpose)

labels one or more of its internal nodes with public IP

addresses officially assigned to other networks. The

reasons for this address misuse vary, but the result is

that a conflict arises when a host from the offending

network must communicate with the public network. Because

of the duplication in IP addresses, the packet is forwarded

to another local host instead of the public host. Twice

NAT attempts to solve this problem by altering both the

source and destination address as the packet travels.

Figure 7 gives a snapshot example of twice NAT.

20

Twice NAT Configuration:
Private to Public: 200.200.200.0/24 => 138.76.28.0/24
Public to Private: 200.200.200.0/24 => 172.16.1.0/24

 Datagram flow: Private => Public

a) Within private network
Dest.Addr.: 172.168.1.100
Src.Addr.: 200.200.200.1

b) After twice-NAT translation
Dest.Addr.: 200.200.200.100
Src.Addr.: 138.76.28.1

 Datagram flow: Public => Private
 a)Within public network
 Dest.Addr.: 138.76.28.1

 Src.Addr.: 200.200.200.100
 b)After twice-NAT translation, in private network

Dest.Addr.: 200.200.200.1
Src.Addr.: 172.16.1.100

Figure 7. Twice NAT Example [IPNATTC]

e. Multihomed NAT

This terminology refers to the concept of using

multiple NAT border devices in a network. For NAT to be

effective it must process all packets being sent to the

internal network, essentially creating a single point

through which all external communications must pass. Users

quickly realized that this created a bottle neck in

traffic, as well as a single point of failure for the

network with respect to external connectivity. Multihomed

NAT enables a private network to have several exits to

external networks, which allows for redundancy in

communications and better use of routing efficiency

algorithms. This approach requires that all NAT devices

maintain the same routing information. Otherwise packets

will be incorrectly dropped, routed inefficiently, or have

duplicated session entries in the tables. Methods for NAT

21

information exchange vary, but all produce the same result:

all NAT boxes have the same tables.

B. NAT IN THE LINUX OS

Because the chosen platform for this thesis is Linux

Red Hat 9.0, it is important to understand how NAT

functions within the Linux 2.6.5 kernel. This section will

examine the primary packet monitoring mechanism within the

kernel, netfilter, and both the kernel-space and user-space

code of the iptables implementation that supports NAT.

1. Netfilter

To understand NAT within the Linux OS, it is important

to have a broad picture of what happens to a packet

entering a Linux system. A packet entering a network

interface on a Linux computer goes through a series of

“sanity checks” which include packet checksum, destination

(if it is, in fact, destined for this computer), etc. in

order to determine if what is received is a valid packet.

Any packet failing these checks is dropped. Following

these sanity checks is the first instance of a netfilter

hook. Effectively, “netfilter is a set of hooks inside the

Linux 2.4.x kernel’s network stack, which allows kernel

modules to register callback functions called every time a

network packet traverses one of those hooks.” [MOSIX] In

essence, each hook provides an opportunity for a kernel

module to look at and manipulate the packet before it

continues (or is dropped) down the routing chain. This

approach provides more modularity than implementing both

netfilter and the underlying NAT code as a monolithic block

of kernel code. The layering is inherent in the setup of

“kernel to netfilter to iptables processing stack“ and

since the traversal of the netfilter hooks and queues is

linear, any introduction of a looping problem would be the

22

result of poorly written code. Each netfilter hook

contains a prioritized list (it may be empty) of the kernel

modules that must access the packet when the hook is

activated. The netfilter hooks accept the following return

codes from the processes, following any alterations the

process may chose to do: NF_DROP (drop the packet),

NF_ACCEPT (keep the packet), NF_STOLEN (keep the processor

and memory resources for the packet, but the process will

handle the packet so netfilter can forget about it),

NF_QUEUE (queue the packet for userspace processing).

These hooks are used by iptables to allow other kernel

space programs the ability to view or alter a packet.

Iptables is the built-in packet manipulation mechanism

that processes packets according to a set of user-defined

rules. The first netfilter hook, following the sanity

checks, is the NF_IP_PRE_ROUTING hook, during which

connection tracking, packet mangling, and destination NAT

occur in that order. Connection tracking looks at the

destination and source address fields of the packet and

records them in a table for a certain amount of time.

Other programs desiring to determine what connections are

active can access this information through the connection

tracking mechanism. Packet mangling is essentially a

sequentially traversed table of rules that are applied to

packets to allow kernel space programs the ability to

manipulate certain fields of a packet. For instance, one

could use the mangling table to perform static NAT by

instituting a rule that forwards all packets with a

specific globally unique IP/port address to a specific

private IP/port address. Destination NAT (DNAT) modifies

the destination IP address of all incoming packets using

23

the nat table to determine the proper IP and/or port

mappings. Variations of DNAT include redirection (back to

the incoming interface), port forwarding (multiple

servers), and load sharing. There is a good excerpt from

Paul Russell and Harald Welte’s “Netfilter Hacking HOWTO”

that describes what happens whenever the NAT code is

called:

“Anyway, the first thing the NAT code does is to
see if the connection tracking code managed to
extract a tuple and find an existing connection,
by looking at the skbuff's nfct field; this tells
us if it's an attempt on a new connection, or if
not, which direction it is in; in the latter
case, then the manipulations determined
previously for that connection are done.

If it was the start of a new connection, we look
for a rule for that tuple, using the standard
iptables traversal mechanism, on the `nat' table.
If a rule matches, it is used to initialize the
manipulations for both that direction and the
reply; the connection-tracking code is told that
the reply it should expect has changed. Then,
it's manipulated as above.

If there is no rule, a `null' binding is created:
this usually does not map the packet, but exists
to ensure we don't map another stream over an
existing one. Sometimes, the null binding cannot
be created, because we have already mapped an
existing stream over it, in which case the per-
protocol manipulation may try to remap it, even
though it's nominally a `null' binding.”

After all of this occurs at the first netfilter hook,

including the previous connection tracking and packet

mangling, the packet then enters “the routing code, which

decides whether the packet is destined for another

interface, or a local process. The routing code may also

drop packets that are unroutable.”(Russell and Welte) If

the packet is an incoming packet, a second netfilter hook,

24

NF_IP_LOCAL_IN is called. This hook again allows kernel

modules, namely iptables, the ability to manipulate and

examine the packet based on information obtained from rules

within the filter, conntrack, and mangle tables. At this

point the incoming packet is passed off to other kernel

modules and is no longer under control of the netfilter

mechanism. If a packet is forwarded to be sent out of the

computer, a third netfilter hook called NF_IP_FORWARD is

initiated which allows packet mangling and filtering, as

well as any other registered processes. From here, a

fourth netfilter hook, NF_IP_POST_ROUTING, is initialized

which allows packet mangling, source NAT (SNAT), and the

connection tracking mechanism to access the packet. Again,

as is the case with all of the netfilter hooks, any kernel

module can access the packet at this point if they have

registered callback functions with the NF_IP_POST_ROUTING

hook prior to the arrival of the packet. The only other

netfilter hook occurs when a packet originates locally and

is destined to leave the system via the local network.

NF_IP_LOCAL_OUT is called which allows conntrack, mangle,

DNAT, and filter to work on the packet. The packet is then

routed and triggers the NF_IP_POST_ROUTING hook mentioned

previously. At each point in the netfilter architecture

where NAT occurs, namely the prerouting, postrouting and

output hooks, the aforementioned processing steps are

repeated. To summarize, NAT checks with the connection

tracking mechanism to see if a connection for the

particular IP address pair has existed before, and if so,

applies the proper rules. If not, the nat table is checked

for rules and if a NAT rule for that address pair exists,

it is applied to the originating packets and its expected

reply packets. Finally, if there is no correlated rule in

25

the nat tables, the originating packet and replies are

assigned a null binding to prevent multiple mappings for a

single session. Figure 8 provides a graphical

representation of the above proceedings.

Figure 8. Netfilter Packet Flow [LNF]

2. Kernel-Space Iptables

The kernel-space iptables code, ip_tables.c, and

related code work together to form the engine for table

traversal and packet manipulation within netfilter.

Whenever a packet reaches a netfilter hook, iptables is

invoked in order to traverse each of its tables to

determine if there are kernel modules that are scheduled at

that hook and, if a rule exists, for that kernel module to

gain control of the packet. To do this, iptables invokes

get_entry() with the IP fields and the table to be

26

traversed as arguments. Once a rule is returned, iptables

then invokes other kernel modules specific to the

particular table in order to perform the requested

operations. For example, when a packet passes the

netfilter pre-routing hook, destination NAT might be

necessary. Iptables is called, with parameters including

packet information from connection tracking and which table

it is to traverse. At this point, iptables checks the nat

table to see if a rule exists. If a rule does exist,

iptables calls another function to perform destination NAT

using the rule it found in the table. Should there not be

any rule for the given packet, a null-session is assigned

and nothing happens to the packet itself. These steps are

repeated for all tables scheduled at the netfilter

prerouting hook. The advantage of having a kernel-space

mechanism for performing these packet manipulations is that

its priority within netfilter for accessing the packet can

be compiled into the kernel so that, if configured to do so

at runtime, iptables can be assured the first action on an

incoming packet instead of a user-space process outside of

the kernel.

3. User-Space Iptables

The user-space iptables code supports user interation

with the kernel-space iptables engine. Iptables is a

command-line interface used to set various flags and rules

used by kernel-space iptables. It then performs the

requested action on the specified table. User-space

iptables can perform any number of operations, such as

listing all of the rules of a certain table, deleting a

user-created table, deleting a rule within a table,

appending a rule to a table, etc. It is important to note

that the user-space iptables and the kernel space iptables

27

share the same set of tables. Since the kernel-space

iptables code needs to continuously access the tables in

order to traverse them and apply their rules, a serious

conflict would arise should the user-space process write to

a table at the same time as the kernel-space process is

traversing it looking for rules. A locking mechanism is

employed to avoid such a conflict. When accessing the

tables to perform a requested operation, the user-space

iptables locks the tables, preventing any other process or

the kernel from accessing them. Should the kernel-space

iptables attempt to access the table while it is locked,

the kernel-space iptables would return an NF_DROP value to

netfilter causing the packet to be dropped so that it will

have to be re-sent. Similarly, the kernel-space iptables

would use the same lock to gain exclusive access to the

tables.

C. MODULE SEQUENCE MAPPING

To better understand what happens in the iptables

code, both kernel and user-space, it was necessary to

inject tracing code into the original Linux source code and

recompile. What follows is a description of what was

injected and the results.

1. Kernel-Space Trace

Rather than writing completely new modules to perform

a trace of what happens in the kernel space when a packet

comes in, the debugging system already in place was used.

Kernel debugging is essentially performed by a switch at

the beginning of the code that turns debugging on or off.

When debugging is turned on, various printk() statements

become active and send debugging messages to the kernel

logfile. The printk() statements used in this trace were

customized to output the file and function that they were

28

located in, and were put into every function of every file

in the /usr/src/linux2.4/net/ipv4 directory. When

implemented, this produced too many debugging statements

and filled up the logfile too quickly to produce any useful

results. The reason for this is that the

/usr/src/linux2.4/net/ipv4 directory contains the core

TCP/IP stack that is touched every time a packet enters the

NIC. What was desired was the ability to trace everything

that would be used within the connection tracking,

iptables, and NAT processes. Realizing this, the kernel

debugging was turned off for everything in the

/usr/src/linux2.4/net/ipv4 folder except for everything in

the subdirectory /netfilter. All of this was implemented

on the Trusted Path Extension (TPE) computer within the

MYSEA network. (More information on the network topology

will be presented in Chapter 4) After successfully adding

code to the kernel and recompiling it, the ICMP echo

request and reply message generated by a ping command were

successfully sent from the client machine, through the TPE,

which was NAT enabled, to the server machine, and back

again. NAT performed the necessary packet translations in

both directions and successfully forwarded the packet.

The results from the kernel logfile indicated several

things. First, that connection tracking accounted for

almost all of the function calls throughout the process.

Second, that ip_tables.c was only called twice during the

entire process, and both times were actually during the

outbound portion of the ping. The first call is to check

for a specific instance of this session, which has not been

established yet, and the second call is to record the

session mapping that the NAT code has performed. At both

29

points ip_tables.c calls the functions ipt_do_table() and

get_entry(). Third, it appears that with return packets,

NAT already knows the bindings it must perform for this

specific IP mapping, and therefore does not need to call

any functions from ip_tables.c. Fourth, if another ping

packet is sent after this one, before the session mapping

is unbound, iptables.c is only called once, because it

finds the session mapping on its first try. To see a

graphical representation of the logfile results from this

test, and the actual logfile results, see Appendix D.

2. User-Space Trace

Another key to understanding the operation of

iptables, in general, is to understand how the user-space

iptables operates. In order to gain a better understanding

of how this part of iptables works, it was again necessary

to insert tracing code into the user-space source code,

recompile the user-space iptables, and perform some basic,

NAT-related commands to see what occurs. The tracing code

consisted of 4 lines of code inserted into every function

of every file of the user-space iptables code. These lines

of code declared an input file, opened it, used fprintf()

to send the file and function information, and closed the

file. This method worked well and did not cause any

compilation problems. One drawback was that it was

difficult to separate the different commands, so it was

necessary to manually annotate the output file after every

command in order to separate the actions. The results were

fairly simple. Whenever a table was manipulated via the

command line interface, almost all of the functions called

within iptables involved converting the user-friendly

information into a more machine-friendly format. The

process then calls functions to allocate memory space and

30

generate the entry in proper format. Finally, depending on

the exact nature of the command, its operating function is

called. For example, if the NAT table was to have an entry

appended onto it, after a large amount of formatting and

some information processing, the actual append_entry()

command is called. An important feature is that, within

the final commands, just before a table is actually written

to, it is locked to prevent simultaneous access by both the

user-space and kernel-space iptables.

31

III. INTERNET PROTOCOL, VERSION 6

This chapter contains a summary of the IPv6 structure

and functionality as it applies to this thesis. Background

information regarding the protocol is presented through the

analysis of relevant RFC’s and supporting academic

research. The application of the protocol to our thesis is

explained and a comparison between NAT functionalities and

those of the IPv6 protocol is examined. Finally, the

current application of this protocol in the Linux kernel is

explained.

A. BACKGROUND AND ANALYSIS

This section examines the history and structure of the

IPv6 protocol. It also describes the IPv6 addressing scheme

and address allocation.

1. Introduction

The growing demand for interconnectivity and the

increasing consumer desire to have more devices wired,

drove the creation of the next version of the Internet

protocol. IPv6 addresses are 128-bits long. This is 4 times

longer than the standardized IPv4 addresses currently in

use. This is 296 times the size of the IPv4 address space,

allowing for hundreds of billions of additional addresses.

Moreover, the most stringent studies regarding the

efficiency of addressing architectures predicts that the

protocol will be capable of “accommodating between 8 x 1017

and 2 x 1033 nodes” [IPng] if the IPv6 addressing

architecture efficiency is comparable to that of the IPv4

addressing architecture.

32

Figure 9. IPv6 Header [ACM IP6]

What follows is the bit length of each field and a

description, taken verbatim from RFC 2460 [IP6 SPEC]:

- Version (4 bits) : Internet Protocol version

number = 6

- Traffic Class (8 bits) : Used to identify and

distinguish between different classes or

priorities of IPv6 packets

- Flow Label (20 bits) : Used by a source to

label sequences of packets for which it

requests special handling by the IPv6 router

- Payload Length (16 bits) : Length of the IPv6

payload, i.e., the rest of the packet following

the IPv6 header, in octets. (Extensions are

included in this number)

33

- Next Header (8 bits) : Identifies the type of

header immediately following the IPv6 header

- Hop Limit (8 bits) : Decremented by 1 by each

node that forwards the packet. Similar to the

time to live (TTL) field in IPv4

- Source Address (128 bits) : Address of the

originator of the packet

- Destination Address (128 bits) : Address of the

intended recipient of the packet

In the IPv6 addressing scheme, there are three

different types of addresses: unicast, anycast and

multicast. Noticeably, the multicast address has updated

the broadcast function used in IPv4. The unicast address

allows packets to be sent to an interface at a single

address. This is used when the address is targeting a

specific, known location. Anycast is an address that is

assigned to multiple interfaces and the packet with an

anycast address is sent to the most easily accessible

(“closest”) node. This addressing format is useful when a

client needs to get a packet to the closest available

server. The multicast address also identifies a set of

interfaces; however, in this mode, the packet is sent to

all interfaces identified by a specific address. This

flexibility in addressing allows a single machine to have

multiple IPv6 addresses of varying types. [IPng]

The increased address length and the number of extra

nodes permitted by it present the subsequent problem of

domain name resolution and address lookup. Currently, when

an IP router receives a packet, the router must determine

what routing subnet in its database most closely matches

34

the incoming packet. It then routes the packet to the

appropriate destination. With the address size increasing

so dramatically, this method of packet forwarding quickly

becomes time and memory intensive. A solution to this

problem has been proposed in a collaborative effort between

the University of Washington and ETH Zurich in Switzerland.

This improved method creates a hash table of prefix lengths

and performs a binary search. It is claimed that the search

method results in an “order of magnitude performance

improvement” [IPROUTE] due to only seven hash lookups

needed for a 128-bit address.

2. Packet Header Format

The number of fields in the IPv6 header is greatly

reduced compared to the IPv4 header, thus making it simpler

and more reliable. The header in an IPv6 packet (see Figure

9) includes information about the version, the priority,

the flow label, the payload length, the next header, the

hop limit and the source and destination addresses. This

header significantly reduces the amount of overhead that

existed in IPv4 (see Figure 2), by removing the

differentiated services byte, IP header length, the

identification field, the flag, the fragment offset, the

time to live (TTL) and the header checksum field. Removing

all of these fields allows IPv6 to include a larger source

and destination address without radically increasing the

time spent on transmitting and receiving the header. [IPng]

Though the IPv6 header is less complex, its design has

allowed for the relatively simple addition of extension

headers or footers. These additional headers can serve many

purposes and allow for future development of the protocol.

Currently, the following headers are being used according

35

to RFC 2460, “Internet Protocol, Version 6 (IPV6)”: Hop-by-

Hop Options, Routing, Fragment, Destination Options,

Authentication Header (AH) and Encapsulating Security

Payload (ESP). [IP6 SPEC] It is easily conceivable that

future headers will provide more functionality than

currently available headers and be just as easy to

implement.

3. Addressing Scheme

The primary benefit of IPv6 is the increased address

space. Instead of only using 32 bits in the header for a

source or destination address, IPv6 uses 128 bits per

address. Considering the new address space, a new address

formatting scheme had to be introduced. Basically, there

are three methods of expressing an IPv6 address. The first

and most standard form is the following:

xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx, where each x is a

hexadecimal digit. Thus, an example of a typical IPv6

address is the following:

94AD:1283:BE45:9E23:FFE4:72A6:820F:7A4B.

The second method to describe IPv6 addresses is used

when there are leading zeros within an octet or several of

the middle octets are zero. In these cases, the leading

zero can be omitted from the octet. Or, in the case of

several octets being zero, the octets can be omitted and

replaced with a double colon. Note that the double colon

can only be used once within the address, denoting one or

multiple octets that are all zero.

An example of this method is the following:

36

94AD:1283:0040:9E23:0009:72A6:820F:7A4B

94AD:0000:0000:0000:0000:0000:0000:7A4B

The above may be expressed as:

94AD:1283:40:9E23:9:72A6:820F:7A4B

94AD::7A4B

The following address is not valid:

94AD::ABCD::7A4B

Finally, the third method is used for addresses that

are used to transition from the IPv4 protocol to the IPv6

protocol or to maintain both addresses at the same time.

This format essentially allows the last two octets to

represent the old IPv4 address while the first six octets

represent the new IPv6 subnet.

For instance, the following IPv4 address:

192.168.100.100

Could be translated to IPv6 with the following
address:

94AD:1283:BE45:9E23:FFE4:72A6:192.168.100.100

Notice that after the sixth octet, the notation

transitions from the separating colons to the current IPv4

standard of dot notation. This format in particular will be

imperative in the transition from IPv4 to IPv6. Given the

37

proper routing mechanisms, it will allow hosts to maintain

sites for both protocols with relative ease.

4. Address Allocation

Just as in IPv4, IPv6 has allocated its address space

through the acceptance of the initial designation presented

in RFC 3513 [IP6 ADDR]. This allocation is a remarkable

paradigm for future planning. As one can see in Table 1

below, the majority of addresses are unassigned and

available for public use. However, a large number of

addresses, proportional to IPv4, are reserved for future

protocol use, link-local, site-local and multicast use.

Table 1. IPv6 Address Space Allocation [NGIP]

38

B. SECURITY

This section will examine the security functionality

inherent in the IPv6 protocol as well as the additional

headers available that enhance security.

1. Existing Security Mechanisms

At the time IPv4 was accepted, the security threat to

packet transmission and reception was minimal. Thus, very

little was built into the IPv4 architecture to protect it

from threats like Man-in-the-Middle attacks, where an agent

intercepts message traffic between two clients; or

masquerading, where an agent masks his true identity with a

false one in order to gain access to a system. IPv6 has

incorporated three main deterrents for the previously

mentioned attacks, an Authentication Header (AH),

Encapsulating Security Payload (ESP), and Internet Key

Exchange (IKE). The AH provides authentication and

integrity both to the end client and forwarding server. It

is able to do this by creating a cryptographic hash of the

packet. If the hash is invalid upon receipt by the end

client, the user knows the packet has either been tampered

with or was not successfully transmitted. Using ESP, an

authenticator is placed at the end of the packet. It uses

the same hash mechanism as AH, however it also encrypts the

payload data and the primary source and destination

address. This conceals the payload of the packet to

intermediate servers, giving extra security to the packet

against a Man-in-the-Middle attack. This mode of packet

transportation is known as tunneling mode transmission.

Finally, the IKE follows the same principles as Kerberos.

[KERB] A private key is encrypted with the end user’s

public key, the packet is sent and then decrypted with the

sender’s public key. [NGI]

39

2. Emerging Technologies

Packets are sent from node to node, eventually ending

at the specified destination address. A router is only able

to send packets to IP addresses that are stored in its

routing table. Neighbor and router discovery and the

sharing of routing information from those routers generate

this table. A security concern arises in this situation due

to the damaging potential that the unknown routers being

queried might supply malicious routing information. Two

emerging security methods for IPv6 neighbor and router

discovery are Cryptographically Generated Addresses (CGA)

and Address Based Keys (ABK). In CGA, the lower 62 bits of

an IP address are used to “store a cryptographic hash of

the public key.” [NRD] To identify a CGA encrypted

address, both bits 6, the universal/local bit, and bit 7,

the individual/group bit, are set to one. The cryptographic

hash of the server’s public key allows the client to send

an encrypted public key to be used in coordination with the

server’s private key, instead of sending the public key “in

the clear.” Using ABK, the user’s private key is used to

generate a digital signature and is placed in the lower 64

bits of the header. The end client then verifies that

portion of the header using a public key to decrypt it.

[NRD]

C. FEATURES PROVIDED BY NAT FOR IPV6

The following section is an examination of the

benefits of NAT for IPv6 and how they apply to this thesis

and the MYSEA architecture.

1. Address Hiding

The implementation of a network address translation

protocol (NAT) for IPv6 will hide internal addresses on a

private network from external view. The new IPv6 protocol

40

does not have any methods for address hiding and cannot

inherently hide internal network addresses from external

view. IPv4 NAT provides address hiding as a result of its

address translation. Every computer on the external side

of a NAT device only sees and communicates with the NAT

device. When outbound communications occur, the NAT device

strips off the source headers and changes them to correlate

with the pool of publicly acceptable addresses assigned to

the device. When the destination computer receives the

packet, it returns communications via the NAT assigned

address and port, not the native private address of the

computer behind the NAT device. The only way a computer

outside the network could initiate communication with a

computer behind a NAT device would be if the internal

computer was statically bound to a particular IP/port

mapping. Meaning that there is a constant 1-to-1

relationship between the true address of the client and the

address of the client after being translated. Even then

the NAT device still performs an address translation on all

incoming and outgoing packets.

2. Dynamic Address Assignment

NAT for IPv6 will provide dynamic address assignment.

IPv4 NAT provides dynamic address assignment through its

address mappings and translations, unless they are

statically bound. This provides an advantage because each

new connection is tracked and mapped to different ports or

ranges of addresses by the NAT mechanism. This makes it

difficult for an outsider to determine which computer in

the NAT-protected network they are communicating with.

Thus, enumeration and mapping of the network are extremely

difficult, which in turn makes certain forms of hacking

more difficult. IPv6 does not provide any method for

41

obscuring the network topography, nor does it provide any

method for translating addresses. NAT for IPv6 will

provide this functionality.

3. Transitioning Mechanism

NAT for IPv6 will help provide a transition from IPv4

to IPv6. Currently IPv4 NAT does not support a packet

transitioning from an IPv4 network to an IPv6 network.

However, the possibility of using an ALG or reconfiguring

NAT to do so does exist. It would be relatively simple to

configure NAT to encapsulate the IPv4 address into an IPv6

format in order to traverse an IPv6 network. All that

would be required would be to put the IPv4 packet entirely

into the data field of an appropriately labeled IPv6

packet. The NAT device would still maintain an appropriate

translation table so that when the returning IPv6 packet

arrives and is stripped down to IPv4 it knows which

computer to forward it to. Address hiding in this way

could still occur as the NAT device could strip the private

IPv4 network address, assign a global IPv4 address and then

encapsulate that datagram into an IPv6 packet. IPv6 does

not have an inherent method of communicating with an IPv4

network without using either encapsulation or reformatting

the header. This is due to the differences in structure

between the IPv4 and IPv6 header formats. Again, while NAT

does not support a packet transitioning from an IPv6

network to an IPv4 network, it is possible to use an ALG or

to reconfigure the NAT device. In the case of the latter,

either the datagram is encapsulated, or the IPv6 header is

stripped off and replaced with an IPv4 header.

4. Tunneling

NAT for IPv6 will be able to tunnel end to end. IPv4

NAT is transparent to end-to-end tunneling, as stated in

42

RFC 2663: “All variations of address translations discussed

in the previous section can be applicable to direct

connected links as well as tunnels and virtual private

networks (VPNs). Note also that end-to-end ESP based

transport mode authentication and confidentiality are

permissible for packets such as ICMP, whose IP payload

content is unaffected by the outer IP header translation.”

[IPNATTC] IPv6 is also compatible with any application

layer end-to-end tunneling as it is merely an IP layer

protocol.

NAT for IPv6 will also work with link encryption.

Since NAT for IPv6 is based on NAT for IPv4, it will have

the same IPv4 NAT characteristics including the ability to

encrypt the payload on an end-to-end basis. The NAT

mechanism does not alter any payload data during

transmission or reception, thus any encryption mechanisms

at the application level remain untouched by NAT as does

all application level data.

5. Connection Limiting

NAT for IPv6 can be used to limit the number of

connections to an external network. IPv6 has no inherent

method of limiting external connections or performing

bandwidth shaping. However, IPv4 NAT can indirectly limit

the number of external connections a network can make. By

limiting either the pool of IP addresses from which a NAT

device can assign translations, or the range of ports that

can be assigned for port translation, a NAT device can

effectively control traffic flow. For example, suppose one

wishes to limit the number of external connections from a

network to 50. By limiting the NAT device to a 50-port

range, all additional requests would result either in the

43

packet being dropped or in an error message. This provides

a unique way to shape the bandwidth of a network, and can

possibly act as a security measure by preventing the NAT

network from becoming a participant in some sort of zombie

or DoS attack.

D. DESIRED NAT FEATURES NOT PROVIDED BY IPV6

Mapping out the respective features of IPv6 and NAT

individually allows a comparison to be drawn between the

two. From this comparison, the desired NAT functionality

that IPv6 does not provide can be discerned with the

ultimate goal of understanding the benefits IPv6 NAT has

over just IPv6. The primary benefit that NAT provides to a

networked computer, one neither IPv4 or IPv6 provides, is

address hiding. By altering the incoming and outgoing

addresses of IPv4 or IPv6 packets, the true IP address of

an internal computer cannot be seen by an outside computer.

IPv6 has no inherent mechanism for this, while NAT provides

this implicitly as part of its implementation. The only

time an internal computer can be externally identified is

when there is a static NAT mapping to an external address.

This ability to hide the topography of a network provides

an additional layer of security by disrupting a hacker’s

attempt to enumerate the network. Another additional

benefit of NAT is that it prevents broadcasts from

traversing it, thereby preventing broadcast attacks.

Additionally, since only internally initiated connections

will be allowed through dynamic NAT (static NAT is used for

externally initiated sessions through the NAT device) any

attempts to flood a network would be stopped at the NAT

device. Besides internal network security, NAT can also be

used to limit the number of simultaneous connections by

limiting the pool of mappable addresses.

44

 Ultimately, the primary benefit of NAT that IPv6 does

not provide is the ability to mask the internal network

from the external viewer. This is well stated by RFC 3022,

titled the IP Network Address Translator: “On the other

hand, NAT itself can be seen as providing a kind of privacy

mechanism. This comes from the fact that machines on the

backbone cannot monitor which hosts are sending and

receiving traffic (assuming of course that the application

data is encrypted).”[TNAT] Most other security benefits

from NAT are derived from the primary benefit of address

hiding. Even though there were not many other discernable

benefits of implementing NAT in IPv6, address hiding alone

is enough to merit the addition of NAT to IPv6.

E. IPV6 SUPPORT WITHIN THE LINUX KERNEL

This section will examine the current IPv6

functionality within the Linux kernel (version 2.6.5) that

will be used in the remainder of this thesis. It is vital

that the current functionality that supports IPv6 within

the kernel is understood so that the existing functionality

is not used effectively and is not duplicated.

1. Initialization

In the Linux kernel version used for this thesis, as

in all current kernel releases, IPv6 protocol support is

available as a loadable kernel module, and is not pre-

loaded by default. To enable IPv6, the developer can either

load the module with the command “modprobe ipv6” or set the

IPv6 module initialization switch to “yes” in the ifcfg

file for each interface. If the development is an ongoing

process, the latter of the two options will be more

efficient for the developer. Once the module is loaded,

the Ethernet interface, unless the IPv4 module is turned

off, will act in dual-stack mode. This allows the interface

45

to receive both IPv4 and IPv6 packets. Loading the module

will also assign each interface controlled by the kernel an

IPv6 address. It will be a link-local address that is based

on the interface’s MAC address. The system now has

connectivity to IPv6 devices connected directly to it.

2. User-Space Functionality

A large part of the iptables command line interface

for IPv4 functionality has been directly adapted for IPv6

usage. Consequently, much of the formatting is exactly the

same, except for a few v6 notations. Examples of these are

the ping function and the traceroute function. The switches

are predominantly the same, however the syntax is ping6

<IPv6 address>. This formatting is somewhat consistent

throughout the multiple user interfaces. For example, with

the Netfilter ip6tables, the syntax is nearly the same as

the syntax for IPv4 iptables regarding the switches and

inputs.

Unfortunately, there are several functionalities

missing in IPv6 that were present in the IPv4 protocol.

Namely, the nat table within iptables is not present within

ip6tables. The primary reason for this is due to the

developers’ lack of priority for developing connection

tracking for IPv6 within the Linux kernel. Since there is

such a large address space in IPv6, it was thought that the

network address translation functionality would not need to

be ported from IPv4. [NONAT] Also, since there is no

connection tracking, some of the filtering rules through

ip6tables do not work, such as the filtering based on TCP

sequence number tracking.

46

3. Kernel-Space Functionality

Much of the kernel-space ip6tables and netfilter IPv6

functionality is directly adapted from the current IPv4

functions. There are several functions within the IPv6

portion of the kernel that even state in the source code

that they are blatant copies of the IPv4 source code with

function name changes and different header files. When the

source code and file structure of the two protocols is

compared, it is obvious that functionality is basically

being duplicated and syntactically manipulated to work with

a different header structure. (See IPv6 Module Sequence

Mapping & Directory Comparison Appendices) It is debatable

whether this is beneficial or not to the Linux and

netfilter communities. It could be argued that since the

code and functional structure worked in the IPv4

environment, it is not necessary to change it for IPv6.

Conversely, if the programming community at large allows a

blind direct port, it is possible that the port could

adversely impair the modularity of future enhancements to

the code.

The source code and file structure within the kernel-

space iptables and netfilter supporting IPv4 and IPv6 are

somewhat similar. As stated previously, many of the

functions are direct copies of IPv4 functions adapted to

work with the IPv6 protocol. Much of the functionality

however, was grouped differently with regards to the file

system. For the most part however, the resulting function

calls from a given networking action produce relatively

similar output.

47

IV. MONTEREY SECURITY ARCHITECTURE

 This chapter contains a summary of the Monterey

Security Architecture (MYSEA): both its purpose and its

topology as they relate to this thesis. The idea and design

of which originated from the problem of achieving

multilevel security in a high assurance manner. By

enforcing mandatory security policies, this architecture

can support such government and military contexts as

coalition environments, inter-Department dependencies

created by the Homeland Security Department and the Global

War on Terrorism.

A. INTRODUCTION

The basis of the MYSEA project is to provide “a

trusted distributed operating environment for enforcing

multilevel security policies.” [MYSEA] The MYSEA

architecture provides centralized management while

maintaining compatibility with existing consumer

applications. MYSEA is a heterogeneous architecture that

consists of low-assurance, commercial off-the-shelf (COTS)

clients, specialized authentication devices, and a small

number of MLS servers (see Figure 10). High assurance

capabilities are achieved through the policy enforcement by

a high assurance platform, namely the DigitalNet XTS-400

which supports the high assurance labeling of subjects,

objects and networks. [MYSEA] MYSEA allows an organization

to implement high assurance security without the need to

completely replace their existing network. The only

additional hardware needed would be the MLS server and a

48

set of specialized authentication devices, such as the

Trusted Path Extension (TPE).

B. ARCHITECTURE

The MYSEA design is primarily a two-tier, client-

server relationship. The client, through the Trusted Path

Extension (TPE), authenticates itself at a given session

level with the MYSEA MLS server. The client is then

recognized by the server for the remainder of the session

at the authenticated level and is therefore authorized for

information of that classification. It may seem that since

the client must authenticate through the TPE, that the

architecture is in fact a 3-tier architecture, similar to

that found in most web-based database clients. Though the

client must authenticate itself through the TPE, the two

entities can actually be viewed as one node to the server

and to the outside network. The TPE, acting as an extension

of the MLS server, provides a trusted path for the user to

authenticate with the server.

49

Figure 10. MYSEA Architecture [MYSEA]

In the MYSEA framework, a large majority of an

organization’s network can stay relatively the same. The

primary differences in the MYSEA architecture as compared

to the standard enterprise architecture are the TPE, the

MLS servers, the Trusted Channel Modules (TCMs) and the

border data link encryptors. As noted by the diagram, the

TCM and the border encryptors are outside the scope of this

thesis. The TCM though, provides basically the same

functionality as the TPE, however the TCM authenticates a

data link to the server whereas the TPE authenticates a

client. [MYSEA]

C. IPV6 NAT TESTBED COMPONENTS

Only the MLS LAN portion depicted in Figure 10 is

within the scope of this thesis and is used as the basis

50

for the IPv6 NAT testbed. Abstractly, the network sees the

TPE and the client as one device. The TPE must perform NAT

to hide the address of the client. The following diagram

(Figure 11) shows the IPv6 NAT testbed on which the

analysis, development, testing and implementation of this

thesis occurred.

Figure 11. MYSEA IPv6 NAT Testbed

As illustrated, the testbed topology consists of two

subnets, the 2003 subnet and the 2004. The TPE within the

IPv6 NAT testbed is equipped with two Ethernet cards and is

consequently able to forward packets between the client and

the MLS server. A simple addressing scheme was used for

ease of maintenance within the IPv6 NAT testbed. This

scheme assigns the middle six octets in the address as well

as the first three digits in the last octet to zero. The

following is a description of each component within the

IPv6 NAT testbed.

51

1. MYSEA Server

In the MYSEA architecture, the server runs the

DigitalNet STOP operating system on top of the XTS-400

platform. [MYSEA] The reason for this is to make the best

use of the Bell and LaPadula as well as Biba policies

supported by the system. For this thesis however, the

server is an earlier prototype of the MYSEA server that

runs on a modified version of OpenBSD 3.1. The modified OS

has the ability to label data at different classifications.

It does not have the required level of assurance for a

MYSEA server. There are relatively few of the DigitalNet

servers that will be used in the MYSEA architecture and are

fairly expensive, thus development and testing on other,

less cost prohibitive equipment was acceptable. Also, since

the protocols that will be used for NAT will be same

regardless of the server or client systems. [MYSEA COMP]

2. MYSEA Trusted Path Extension

The TPE is an extension of the MLS server, providing

an unforgeable interface for the user to authenticate with

the MLS server. The principal importance of the TPE is that

it is non-bypassable by the client. All traffic that is

transmitted or received by the client must first pass

through the TPE. This is a mechanism that cannot be

subverted, regardless of the sophistication of the

malicious software.

The TPE can take the form of a separate device from

the client CPU. Herein, all network traffic leaving the

Ethernet device must first pass through the TPE before

reaching the server. The TPE can also take the form of a

specially designed Ethernet card with a separate processor

52

and memory. The TPE can possibly even be a cutting-edge

Common Access Card (CAC) with its own processor. The

primary concern is that the TPE’s domain is separate from

the client’s with regards to the processor and memory. This

ensures that the trusted path will not be corrupted by

malicious activities that might take place on the client

In the IPv6 NAT testbed environment, the TPE is a PC

with a heavily modified version of Linux 2.6.5 running on

an Intel x86 processor. As noted previously, the TPE

maintains two separate Ethernet cards on two different

subnets. Currently, the TPE in the IPv6 NAT testbed

environment does not run the actual TPE code. It only

emulates the NAT functionality of a TPE and maintains the

non-bypassability characteristic inherent in any trusted

path. The packets transmitted or received by the client

must first be forwarded by the TPE before reaching the

server.

It is for this reason that the NAT functionality is

placed within the TPE. Therefore, as a result of the

architecture, one could hide either a single client or an

entire network of clients behind the TPE. From the

viewpoint of the MLS server, the network topology appears

as if the server is only in communication with the TPE. In

reality, there could be one or more nodes hidden behind it.

Though it is possible to conceal multiple systems behind

one NAT device, the MYSEA architecture is designed for one

TPE for every client. The goal of this thesis is to achieve

this concealment for the MYSEA client in an IPv6

environment.

53

3. MYSEA Client

The MYSEA client is intended to be a diskless COTS

system running unmodified end-user applications. This

client will have enough RAM to run various applications at

the same time. Client memory will be reset when a session

is terminated and all user-specific files and settings will

be stored on the MLS server.

In the IPv6 NAT testbed, however, the client is

currently a Linux 2.4.20-8 kernel running on an Intel x86

processor. This was done primarily to facilitate the

testing of NAT in an IPv6 environment. Since Linux has

built-in support for IPv6 and netfilter, it was chosen for

developmental reasons. The most important functionality

requirement for the client system in the testbed

environment is the capability to test multiple network

protocols over the NAT environment as well as monitor the

network traffic from its Ethernet interface.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

V. COMMON CRITERIA ASSURANCE LEVEL EXPLORATION

This chapter contains a summary of the Common Criteria

security evaluation process, a presentation of requirements

for Evaluation Assurance Level 5 (EAL5) and a discussion of

how some of these requirements were used to guide the IPv6

NAT implementation. The IPv6 NAT mechanism implemented for

this thesis is primarily a one-to-one port of the existing

IPv4 NAT mechanism, thus the implementation does not

satisfy many of the EAL5 requirements.

A. COMMON CRITERIA BACKGROUND

The Common Criteria (CC) was created as a solution to

the multiple international standards that were intended to

independently regulate the field of IT security evaluation.

Before 1999, when the CC was adopted as an ISO standard,

several standards existed including the Information

Technology Security Evaluation Criteria (ITSEC) of Europe,

the Trusted Computer System Evaluation Criteria (TCSEC -

Orange Book) of the US and the Canadian Trusted Computer

Product Evaluation Criteria (CTCPEC) from Canada. A

comparison of the assurance evaluation levels between the

aforementioned standards can be found in Table 2.

The intent of the CC was to create a standard set of

components that define the security requirements needed to

categorize IT products by assurance and functionality. The

CC provides a great deal of flexibility in that the design

team for a particular IT product can specify the security

functionality within the definition of the protection

profile for that class of IT products if one exists. The

56

design team also has the flexibility to select the

assurance level at which the product is evaluated.

Table 2. Assurance Evaluation Comparison [CC WWC]

B. EVALUATION PROCESS

The CC format requires developers to have their IT

product or code independently evaluated by a third-party

using a common set of evaluation standards. This process

involves the examination of the IT product for claimed

functionality as well as for adherence to a stated set of

security requirements. This evaluation is performed by an

independent testing lab and can be costly in terms of both

time and money. The major benefit received from this

evaluation is the ability to give confidence in the product

to the end-user based on a guaranteed security assurance

level.

For a CC evaluation there are two principal components

that the developer must provide to the independent

evaluator: the Target of Evaluation (TOE) and the Security

Target (ST). The Protection Profile (PP) is optional,

however it can provide a more abstract statement of

57

security objectives to which many security targets may be

conformant.

The Protection Profile (PP) defines the set of

security objectives and requirements (both functional and

assurance) for an IT product class. Product categories

include but are not limited to: firewalls, intrusion

detection systems (IDS), key recovery, operating systems

(OS), peripheral switches and tokens. These are the

categories for which, at the time of this publication, a

valid US Government PP exists. If the IT product claims

conformance to a PP, then the validation and fulfillment of

the appropriate profile is required for certification of

the IT product. [CC SECEVAL]

The Security Target (ST) contains the security

objectives and requirements for a particular IT product.

The level to which the independent lab examines the TOE’s

assurance measures and functionality is dependent on the

desired Evaluation Assurance Level (EAL). As illustrated in

Table 2, the EALs correlate to the evaluation levels of

TCSEC and ITSEC, with EAL7 being the highest evaluation

level and EAL0 the lowest.

58

Table 3. EAL5 Fulfilled Requirements By This Project [CC]

The Target of Evaluation (TOE) is the actual IT

product that is to be evaluated by the third-party lab. The

PP defines the scope of the product for the specific

category of evaluation that the TOE must satisfy in order

to claim conformance. [CC SECEVAL]

C. EAL5 REQUIREMENTS

For an IT product to receive an EAL5 certification, it

must satisfy a series of conditions that verify its

evaluated level of assurance. The security assurance

evaluation of an IT product includes verifying its

configuration management (CM), delivery and operation,

development, guidance documents, life cycle support,

testing, and vulnerability assessment. A summary of these

59

requirements can be found in Appendix F. Table 3

illustrates the fulfilled assurance components by this

implementation for an evaluation level of EAL5. [CC

SECEVAL] The following sections describe the security

assurance requirements that were partially satisfied by

this NAT for IPv6 implementation.

1. Installation, Generation and Start-Up

The installation guide to install and setup the

modified kernel with NAT functionality for IPv6 is

described in Appendix G. This guide patially satisfies the

ADO_IGS.1 requirements described in Appendix F, Section 5.

2. Administrator Guidance

Appendix E describes how to administer and use the NAT

mechanism for IPv6 developed for this thesis. This guidance

manual is intended for use as the man page for the

ip6tables service provided by the Linux kernel. This

manual partially satisfies the AGD_ADM.1 requirements

described in Appendix F, Section 13.

3. Development Security

This development meets these requirements on many

levels. First, the development occurred at the Naval

Postgraduate School, which is currently subject to the

Department of the Navy Force Protection measures. Second, a

cipher-locked door that remains shut at all times protects

the lab in which development occurred. Finally, the

computers used for development are protected by

identification and authentication mechanisms that validate

the identity of the user to prevent unauthorized access on

the development system. Since there was no prior written

plan or procedures regarding security, these measure only

partially satisfy the ALC_DVS.1 requirements described in

Appendix F, Section 15.

60

4. Functional Tests

Appendix D provides the results from testing the

functionality of the IPv6 NAT implementation. This

requirement is only partially fulfilled since there are no

test plans, procedures or documentation. These test results

partially satisfy the ATE_FUN.1 requirements described in

Appendix F, Section 20.

61

VI. DEVELOPMENT AND TESTING OF NAT FOR IPV6

This chapter discusses the development and

implementation of NAT for IPv6, which primarily is a one-

to-one port of the IPv4 netfilter NAT mechanism. The order

in which the layer 3 and layer 4 checksums were calculated

had to be reversed because the standard IPv6 header

structure does not containing a checksum. Additionally,

the introduction of a pseudo-header checksum to ICMPv6

required the functionality to be restructured. These

modifications, as well as, porting methodology, testing

procedures, and debugging outputs will also be discussed.

In addition, the specification document for this project

can be found in Appendix B.

A. CONNECTION TRACKING

For NAT to function properly, it must be able to track

connection information for each initiated session. This

allows NAT to translate a packet to the proper internal IP

address. Otherwise, NAT would not be able to determine if

an incoming packet is attempting to initiate a new session,

or if it is a reply to a previously established connection.

For IPv4, the netfilter connection tracking module

performed this function by capturing and storing session

information accessable to any number of processes to

access, NAT being one of them. However, from the time IPv6

was integrated into the kernel up to the latest standard

2.6.5 Kernel distribution, connection tracking for IPv6 was

not developed.

The Universal Playground for IPv6 (USAGI) project

develops and distributes IPv6 programs and kernel patches

62

for interested developers. Included in some of the more

recent Linux 2.6 kernels is a connection tracking module

for IPv6 that closely mirrors the IPv4 connection tracking

implementation. For this thesis the IPv6 NAT mechanism was

ported to run on the USAGI-altered 2.6.5 Linux kernel.

Using the USAGI kernel allowed the development to focus on

NAT rather than supporting functionality. This helped to

shorten the development time.

B. PORTING METHODOLOGY

Since the netfilter, connection tracking, and user-

space iptables framework for IPv6 had already been ported

to IPv6, it was decided that a one-to-one port of the IPv6

NAT code would be the easiest way to create a functional

implementation. The IPv6 programming convention used by

the netfilter developers was maintained in the ported code.

This port was easier because it was done on the same

hardware architecture, Intel X86, instead of crossing over

to some other hardware architecture, SPARC for example.

Additionally, porting this code using the same operating

system made the process easier. Porting between Linux and

Windows would have been far more difficult than to and from

Linux.

Performing this port using the same hardware and

operating system prevented some potential difficulties.

For example, recompiling the Linux kernel requires complex

configuration for hardware dependancies, but using the same

hardware allowed the same configuration to be used each

time. A majority of the one-to-one port involved copying

the existing IPv4 NAT code into the IPv6 codebase, and then

changing variable names, function names, and references to

reflect IPv6 values. Problems other than simple porting

63

errors are discussed later. Using the same porting

methodology as the netfilter developers allowed the coding

process to transition much more smoothly than if an entire

restructuring of the code had been attempted.

1. User-Space Iptables

Iptables package 1.2.9 contained the latest user-space

iptables and ip6tables implementation available at the time

of the IPv6 NAT development. Since NAT was not ported to

the IPv6 ip6tables, this version did not have the logic

necessary to interact with the kernel-space IPv6 NAT code.

In order to have basic NAT functionality, it was

necessary to perform a one-to-one port of the source NAT

(SNAT) target. SNAT provides the logic needed to allow the

user-space ip6tables to interact with the nat table shared

by the kernel-space. Instead of creating an SNAT target,

the IPv4 SNAT target was ported to ip6tables. The one-to-

one port was chosen because it followed the methodology of

the netfilter programmers. Additionally configuration of

the main ip6tables file was necessary so that it recognized

the new SNAT target. This process succeeded with little

difficulty as the one-to-one port was relatively

straightforward.

One coding issue relative to the parsing of a port

number from a given IP address range was encountered. The

standard convention for designating a layer 4 port with an

IPv4 address is to use a colon to separate the IP address

and port pairing. For example, 192.168.100.100:80 would

specify that the 192.168.100.100 IP address was to operate

on port 80. This IPv4 convention does not work with IPv6,

as colons are used to separate the IPv6 octets. However,

RFC 2732 [IP6 URL] establishes the convention of placing

64

brackets around the IP address to delineate it from the

port pairing. For example, specifying that IPv6 address

2003::5 operates on port 80 results in the expression:

[2003::5]:80. However, because this IPv6 NAT development

only deals with Basic NAT, which does not deal with ports,

this problem was not addressed.

2. Connection Tracking and Netfilter

Although the USAGI developers had ported the

connection tracking modules for IPv6, they deliberately

left out NAT-specific code. The connection tracking core

source code file ip6_conntrack_core.c was modified to

include NAT functionality that had not been ported from its

IPv4 counterpart. This code is referenced in Appendix C.

Additionally, the connection tracking header file was

changed to allow programmers to utilize NAT helpers and

helper private information in connection tracking. Nat

helpers are functions that help NAT process packets from

applications that require more than simple layer 3 and

layer 4 alteration. For example, FTP, TFTP, and AH need

NAT helper functions to deal with IP information within the

payload.

Unexpectedly, modifications to netfilter core code had

to be made as well. The netfilter.c in Ipv4 file contains

a function called skb_ip_make_writable that allows NAT to

write the translated IP information to the networking

packet buffer (skb). This function did not exist for IPv6

and had to be ported in order for NAT to change the packet

in the network buffer.

3. NAT Code

The one-to-one port of the NAT code is described here.

The porting process began by comparing the IPv4 netfilter

65

files to those in IPv6 to determine where they differed.

Each file was examined to determine if it had any relevance

to NAT either as a core code file or as a supporting file.

Only supporting files that are germane to this thesis

(i.e., to support SNAT) were ported. Protocol-specific NAT

helper files and functions such as the FTP and TFTP modules

were not ported. These modules allow NAT to deal with

applications needing special translation. Porting of these

modules is outside the scope of this thesis.

The Change Control Procedures Appendix (see Appendix

A) contains a list of all NAT files that were either

modified or ported, and a brief description of their

functionality.

Porting the NAT code involved updating the IPv4 code

to handle the differences in format between the IPv4 and

IPv6 headers. For example, since the IPv4 header can

include any number of options, its size is dynamic and the

NAT code has to calculate the actual header length whenever

it needs to know the IP header length. However, IPv6

headers are static in length and the NAT code can use a

constant index value to determine the header length of an

IPv6 packet.

Another difference between the IPv4 and IPv6 code that

had to be fixed was how different pointers reference

specific structures and fields. For example, the IP header

pointer of the network packet buffer structure (skb) in

IPv4 is named iphdr, yet in IPv6 the IP header pointer is

named ipv6hdr. Many of the variable names had to be

altered to reflect name changes made between IPv4 and IPv6

because of the convention that already existed when

netfilter was ported to IPv6. In addition to changing

66

variable names, it was also necessary to edit many of the

included header files and many of the included, as well as

referenced, function names. For instance, the NAT code

needed the ipv6.h file as opposed to the ip.h file, and it

had to rename its reference to ip_conntrack_tuple to

ip6_conntrack_tuple. All of these changes were based on

the porting conventions used by the netfilter programmers

when they ported the networking suite from IPv4 to IPv6.

C. PORTING DIFFICULTIES

The one-to-one method of porting NAT code provided a

streamlined framework for modifying and creating code.

However, several difficulties arose during development.

These are described in this section.

1. IPv6 Address Structure

The first major obstacle experienced in the NAT code

port dealt with differences in how the kernel handled the

IP addresses. In the Linux kernel an IPv4 address is

defined as an unsigned 32-bit integer, yet an IPv6 address

is defined as a 128-bit structure. This structure contains

a union of three arrays of 4, 8, and 16 elements, allowing

the 128-bit IPv6 address to be accessed in three different

formats. Many of the functions in IPv4, both NAT and other

netfilter functions, manipulate the IP address through

binary operators. However, binary operators cannot be

applied to a structure, making it difficult to compare IP

addresses for equality, increment or decrement IP

addresses, or to perform bitwise manipulations. A simple

assignment of a translated IP address to a source IP

address (src.ip = nat.ip) cannot be performed with a

structure data type. Some functions use bitwise

manipulation as a shortcut to performing standard

mathematical operations. For example, computing a checksum

67

based only on what has changed would be a shortcut to re-

computing the entire checksum after one or more fields have

changed.

In most cases the solution to this problem involved

accessing the IP address one array entry at a time or by

assigning pointers to the array. For instance, if the

above IP address assignment were to be performed through

array access, the result would look something like the

following: src.ip.s6_addr32[0] = nat.ip.s6_addr32[0]. The

index is then incremented on each array element until it

reaches 3, thereby assigning each 32-bit portion of the

temporary IP address to the respective 32-bit portion of

the source IP address. If the operation were to be done

with pointers, the contents of the location pointed to by

the source IP pointer would be assigned to contain the

contents of the location pointed to by the temporary IP

pointer. In some cases the solution simply involved using

existing functions already ported by netfilter and USAGI

programmers.

2. Checksum Calculation Ordering

When the NAT mechanism alters the header of a packet,

it must recalculate the packet’s checksum so that the

packet will not be dropped at its next hop due to an

invalid checksum. In IPv4, a recalculation of the layer 4

checksum is needed when layer 4 information is manipulated.

The new checksum is based off of the translated layer 4

information. Following the checksum recalculation for

layer 4, the NAT code manipulates the IP addresses and re-

computes the IP header checksum. This logic flow works for

ICMP for IPv4, however it does not work for ICMP for IPv6

(ICMPv6). The checksum for ICMPv6 is different from that

68

for ICMP because it includes in its calculations not only

the checksum of the layer 4 header information and the

layer 4 data, but also the checksum of a pseudo-header.

This pseudo-header is needed because there is no checksum

in the IPv6 header to protect the header information. The

pseudo-header consists of the source and destination IP

address, the length of the layer 4 header and packet, the

checksum field, and the next header field. Figure 12 shows

the pseudo header format for IPv6 as taken from RFC 2460.

[IP6 SPEC]

Figure 12. Layer 4 Pseudo-header for IPv6 [IP SPEC]

Calculation of the ICMPv6 checksum before IP address

translation results in an incorrect checksum due to the IP

addresses in the pseudo-header. The solution to this

problem was to switch the order of the IP address

translation and the layer 4 checksum calculation. Figure

13 shows a portion of the IPv4 manip_pkt() function,

located in ip_nat_core.c, that recalculates the checksum of

the IP header.

69

Figure 13. IPv4 Function manip_pkt()

In IPv4, the ICMP protocol information is manipulated

(line 1) before the IP address is changed (lines 6 or 9

depending on the type of NAT) because the ICMP checksum did

not depend on the IP addresses. For IPv6, the calculation

of the pseudo-header in the ICMPv6 checksum requires a

switch in logic so that the modified IP addresses can be

included in the ICMP pseudo header checksum calculation.

This change can be seen in Figure 14, which is the IPv6

version of the manip_pkt() function, located in

ip6_nat_core.c

70

Figure 14. IPv6 Function manip_pkt()

The “Manipulate IP part” (line 2 or 4 depending on

type of NAT) and the “Manipulate protocol part” (line 5)

are switched compared to the existing IPv4 NAT code. This

change in ordering provided the pseudo-header calculations

with the translated IP addresses necessary to calculate a

valid checksum. Another noticeable difference between

Figure 13 and Figure 14 is the absence of an IP header

checksum calculation, which is present on lines 5 and 8 in

Figure 13, but not needed by IPv6 (Figure 14).

3. Checksum Calculation Algorithm

In addition to changing the order of operations in the

manip_pkt function, it was also necessary to alter the

method in which checksums were calculated for the layer 4

headers. In IPv4, checksums of translated packets are

calculated using an optimized algorithm implemented in

ip_nat_cheat_check that uses bitwise manipulation to re-

calculate the checksum based only on the changed ports and

IP addresses. This function performs basic bit

manipulations in assembly code and assumes that the input

arguments are 32-bit integers. This assembly code function

71

was not easily ported to support IPv6 data structures. A

less optimized, but straightforward, method that uses the

existing csum_partial() and csum_ipv6_magic() functions

solved the problem. The csum_partial() function calculates

the layer 4 checksum with the exception of bitwise

manipulation. Omitting the final bitwise flip then allows

the result to be folded into the pseudo-header checksum

calculations done by csum_ipv6_magic(). This results in a

valid layer 4 checksum which accounts for the pseudo-

header, layer 4 header, and layer 4 payload.

D. DEBUGGING

After the initial one-to-one port was completed and

successfully compiled into the kernel, the code did not

function as expected. Debugging was necessary to determine

why the code was not operating properly and extensive use

of printk was the primary method for debugging the code.

Printk is the kernel debugging mechanism that flushes

debugging messages to a log file that a user can access.

The initial solution to the improper code execution was to

increase the number of debugging messages so that detailed

call chains could be mapped out. These additional

debugging statements allowed the code to be traced to

within a function call of the problem.

One drawback of printk is that it requires that the

kernel messages be flushed to the log file. This limitation

resulted in a problem during testing, when an errant

pointer caused the kernel to trap and lock up the system.

To obtain real-time kernel debugging messages, and to allow

the point of failure to be isolated, it was necessary to

enable the serial console interface of the kernel. This

interface allowed the display of real-time debugging

72

messages on a remote console. This helped to isolate the

trapping code.

While effective in displaying function call chains and

variable values, the use of printk to display the actual

packet data was cumbersome. To obtain this information it

was necessary to use the tcpdump program to obtain a

hexadecimal output of packets entering and leaving the TPE

interfaces. This output allowed detailed scrutiny of

packet contents to ensure that information into and out of

the TPE was correct. Tcpdump places the network interface

card (NIC) into the promiscuous mode to capture all packets

entering or leaving the interface, and outputs the captured

information. This simplicity and its inclusion as a

standard tool in almost all Linux distributions made

tcpdump a good choice for packet capturing on the TPE.

During the later stages of debugging and development

the TPE would properly translate IP addresses, but the

packet would be dropped at the server. This problem was

approached by placing the Ethereal program on both the

client and server machines. Ethereal produced a much more

detailed and user-friendly output. This output helped

solve the question as to why packets would reach the server

properly translated, yet still be dropped. Ethereal output

showed that the packet was properly translated but that its

checksum was incorrect. Ethereal also calculated what the

checksum should have been given the header information.

The reason packets were being dropped at the server was an

improper checksum calculated by the NAT code, because the

wrong length was passed to the checksum functions. Once

this problem was fixed, packets were successfully

transmitted and the NAT code functioned properly.

73

E. TESTING

For this thesis, different network applications were

used to verify that the SNAT implementation works

correctly. Three types of protocols were tested: ICMPv6,

UDP, and TCP. ICMPv6 was tested using the ping6 mechanism,

UDP was tested using the traceroute6, and TCP was tested

using rlogin and by downloading a webpage through the TPE.

During each testing phase various errors were encountered

and ultimately fixed.

Ping6 tested ICMPv6 NAT by sending an Echo Request

packet from the Client to the Server. This Echo Request

packet then resulted in transmission of an Echo Reply

packet back to the client. During this testing Ethereal

showed that the ICMPv6 Echo Request packet was properly

translated through the TPE, but was dropped by the server.

This problem was a result of the improper calculation of

the checksum and the calculation of the checksum before the

IP address was translated. Once this logic and ordering

was fixed, ping6 completed successfully. Ethereal showed

proper translation of both the ICMPv6 Echo Request and Echo

Reply packets to and from the client and server machines.

These Ethereal and tcpdump outputs can be found in Appendix

D.

The next test was to run traceroute6 to test UDP

packet translation. Traceroute6 determines the hop-by-hop

route from source to destination. A UDP packet is sent out

with a hop limit of one and each time traceroute6 receives

an ICMPv6 Timeout message, it records the IP address and

adds it the route. When the UDP packet reaches the

specified target destination, an ICMPv6 Destination

Unreachable message is returned and the route is displayed.

74

During NAT testing, Ethereal output from the server showed

that while UDP packets were properly translated, the

replying ICMPv6 Destination Unreachable packet was dropped

at the TPE. After finding a misplaced bracket in the

ported code, the ICMPv6 Destination Unreachable packet was

properly forwarded from the server, through the TPE, to the

client.

At this point, the Ethereal output from the client

showed that the ICMPv6 Destination Unreachable packet was

being dropped due to an improper checksum. Further

evaluation of the call chain, and respective code, revealed

that ICMPv6 error messages followed a different logic flow.

This logic flow reached a checksum calculation, in the

function icmpv6_reply_translation() located in

ip6_nat_core.c, that had not been changed to use

csum_partial() and csum_ipv6_magic(). After the checksum

calculation logic was fixed, the client properly received

the ICMPv6 Destination Unreachable packet from the Server,

and traceroute6 operated successfully.

The NAT mechanism for TCP uses the same logical flow

as UDP packets except that the TCP flow also accounts for

ports which is beyond the scope of this thesis. After

changing the TCP checksum calculation to use csum_partial()

and csum_ipv6_magic(), TCP packets properly traversed the

NAT mechanism in the TPE. To test the translation of TCP

packets from the client to the server and back again,

rlogin was used in addition to downloading a webpage.

Using rlogin, an authorized user was able to log into the

server from the client, list a directory, use “cat” to list

the contents of a text file, and then log off, all through

the TPE running NAT. Downloading the webpage involved

75

setting up an Apache web server on the Server machine and

then downloading the webpage through the TPE running NAT.

The results of both tests were verified by Ethereal outputs

(see Appendix D) that showed the proper translations at

both the server and client ends of the IPv6 NAT test bed.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

VII. CONCLUSION & FUTURE WORK

This chapter gives an analysis of the NAT mechanism

integrated within the Linux kernel for use with IPv6.

Recommendations for future work on the IPv6 NAT mechanism

and suggestions for pursuit of future work on the current

NAT implementation for IPv6 within the Linux kernel are

also presented.

A. ANALYSIS OF THE INTEGRATED NAT

Upon completion of debugging, the NAT mechanism was

tested within the framework of the IPv6 NAT tested for use

with the MYSEA architecture. As explained in Chapter IV,

the NAT mechanism was placed on the TPE and all traffic

from the client or server must pass through the TPE.

Testing of three protocols, TCP, UDP and ICMP, was

conducted and the results are described in Chapter 4 and

can be found in Appendix D. The SNAT functionality was

demonstrated to function properly with use of common

networking applications such as ping6, traceroute6 and

rlogin. As a culminating experiment, an Apache web server

was placed on the testbed server and hosted multiple web

pages. The IPv6 NAT mechanism was then activated on the TPE

with rules set to mask the identity of the client. The

client then accessed the web pages from the server, through

the TPE, with a connection that was successfully masked

through the NAT mechanism. Ethereal was used to verify the

successful translation of packets.

B. FUTURE ALTERNATE IMPLEMENTATION DESIGN

The NAT mechanism developed in this thesis is based on

the current dual-stack architecture in current Linux kernel

78

releases. In this architecture, there are separate call

chains for IPv4 and IPv6. For future NAT developments,

there are two possibilities for implementation redesign:

rewrite the current dual-stack netfilter architecture into

a single stack, or decouple the NAT functionality from

netfilter.

Currently, there are two separate netfilter stacks for

IPv4 and IPv6. This functionality traces to the

initialization of netfilter where it is called by different

receive functions for IPv4 packets and IPv6 packets. A

future design could combine the functionality present in

both stacks into one, cohesive stack. This would reduce the

amount of functionality duplication. This is beneficial for

assurance purposes since there would be less code to

verify. Also, the code would be more efficient and require

less memory than the current implementation. This project

would however involve an immense amount of work and a great

deal of previous knowledge regarding both netfilter and

Linux kernel programming.

Alternately, the NAT mechanism could be removed from

netfilter such that it is a separate entity. Presently, the

NAT mechanism is highly dependant on the netfilter

architecture.

Another redesign alternative would be to develop a

kernelized NAT mechanism that operates in a completely

isolated manner. Here, the mechanism would most likely

intercept the packet before netfilter manipulates it via

the receive functions. This design would be beneficial

since all the NAT functionality would be modular and thus

better suited for a high assurance design.

79

C. OTHER FUTURE WORK

There are many areas in which the current

implementation could be improved without restructuring the

architecture or design. These include but are not limited

to work on: extension headers, multiple protocol support,

greater user-space functionality, port translation,

multiple types of NAT mechanisms, and address or port

ranges.

One recommendation is to fix the checksum calculations

to handle extension headers when calculating the length of

layer 4. In the current implementation, this is calculated

by subtracting the IPv6 header length from the length field

in the skb. This has the potential to yield an improper

value, specifically if extension headers are present. In

the current protocol, the next header field of the IPv6

header does not necessarily point directly to layer 4,

primarily in the case of extension headers resulting from

IPSEC or ESP. [IP SPEC] A suggested method for properly

calculating the layer 4 payload length would be parse

individual fields from the skb until the beginning of the

layer 4 header is reached and then calculate the length.

Another recommendation for future development would be

to enable support for other layer 4 protocols. Currently,

the implementation supports TCP, ICMP and UDP. Though these

protocols enable a great deal of functionality, there are

other protocols, such as FTP, TFTP and IRC, that are

functional in IPv4 that are not yet developed for IPv6. For

example, IRC will be required to support the new Naval

Research Laboratory multilevel chat program in the MYSEA

multilevel testbed.

80

At this time, only the SNAT target has been ported to

the IPv6 user-space ip6tables. For the purposes of this

thesis within the IPv6 NAT testbed for the MYSEA

architecture, it was the only target needed for testing

purposes. There are other targets, such as DNAT and

MASQUERADE, which are present in IPv4 that have yet to

ported to IPv6. Porting these targets would allow greater

flexibility for the nat table within ip6tables.

Future work could involve advancing the current NAT

implementation to perform the additional NAT functions as

dictated by RFC 2663. [IPNATTC] This NAT implementation

only handles the functionality necessary for basic NAT.

[IPNATTC] This work could involve adding port translation,

destination NAT and static NAT support to the current NAT

implementation.

Finally, this NAT implementation does not support the

assignment of ranges of either ports or addresses for the

address translation mechanism to use. Future work in this

area could include not only developing the user space and

kernel space to accept ranges, but also the development of

a robust algorithm for use in assigning either addresses or

ports.

D. SUMMARY

A working implementation of NAT for IPv6 within the

Linux kernel has been produced. It was created on a

modified version of the Linux 2.6.5 Kernel that supports

connection tracking. The NAT development created here has

been tested for support of the protocols of TCP, UDP and

ICMP for IPv6.

81

LIST OF REFERENCES

[NRD] Arkko, J. “Securing IPv6 Neighbor and Router

Discovery.” Proceedings of the ACM Wireless Security

Workshop. September 2002.

[SPIRAL] Boehm, B. “A Spiral Model of Software Development

and Enhancement.” IEEE Computer. May 1988.

[CC] Common Criteria for Information Technology Security

Evaluation, Part 3: Security Assurance Requirements.

Version 2.2, Revision 256. CCIMB-2004-01-003. January

2004.

[CC SECEVAL] Cox, P. “Security Evaluation: The Common

Criteria certifications.”

[http://www.itsecurity.com/papers/border.htm]. 2000.

[IP6 ADDR] Deering S., and Hinden R. “Internet Protocol

Version 6 (IPv6) Addressing Architecture,” RFC 3513.

April 2003.

[IP6 SPEC] Deering S. and Hinden R. “Internet Protocol,

Version 6 (IPv6) Specification,” RFC 2460. December

1998.

[MTU] Deering, S. and Mogul, J. “Path MTU Discovery,” RFC

1191. November 1990.

[MEMO] Department of Defense memorandum, SUBJECT: Internet

Protocol version 6 (IPv6). June 9, 2003.

[NGIP] Drakos, N. “Next Generation IP”

[http://www.cs.arizona.edu/llp/book/node53.html].

December 1995.

82

[NF OVER] Eastep, T. “Netfilter Overview.”

[http://www.shorewall.net/NetfilterOverview.html].

March 2004.

[ACM IP6] Gulati, S. “The Internet Protocol – Part II : The

Present and the Future.”

[http://www.acm.org/crossroads/columns/connector/augus

t2000.html]. January 2001.

[CC WWC] Hayes, K. “Common Criteria – A World Wide Choice.”

[http://www.itsecurity.com/papers/88.htm]. 1998.

[IPng] Hinden, R. “IP Next Generation Overview”

Communications of the ACM. June 1996.

[IP6 URL] Hinden, R. and others “Format for Literal IPv6

Addresses in URL’s,” RFC 2732. December 1999.

[NONAT] IPv6 Forum. “NAT: Just Say No.”

[http://www.circleid.com/article/355_0_1_0_C/].

October 2003.

[MYSEA] Irvine, C., and others “Overview of a High

Assurance Architecture for Distributed Multilevel

Security.” Proceedings of the 2004 IEEE Workshop on

Information Assurance and Security. June 2004.

[DoD SOIP] Kent, S. “U.S. Department of Defense Security

Options for the Internet Protocol,” RFC 1108. November

1991.

[MYSEA COMP] O’Neal, M. A Design Comparison Between IPv4

and IPv6 in the Context of MYSEA, and Implementation

of an IPv6 MYSEA Prototype. Master’s Thesis. Naval

Postgraduate School. Monterey, California. June 2003.

[ICMP SPEC] Postel, J. “Internet Control Message Protocol,”

RFC 792. September 1981.

83

[IP] Postel, J. “Internet Protocol,” RFC 791. September

1981.

[AAPI] Rekhter, Y. and others “Address Allocation for

Private Internets,” RFC 1918. February 1996.

[NFHH] Russell, R. and Welte, H. “Linux netfilter Hacking

HOWTO.”

[http://www.netfilter.org/documentation/HOWTO//netfilt

er-hacking-HOWTO.html]. July 2002.

[IPNATTC] Srisuresh, P. and Egevang, K. “IP Network Address

Translator (NAT) Terminology and Considerations,” RFC

2663. August 1999.

[TNAT] Srisuresh, P. and Egevang, K. “Traditional IP

Network Address Translator (Traditional NAT),” RFC

3022. January 2001.

[MOSIX] Subramanian, R. A Technique for Improving the

Scheduling of Network Communicating Processes in

MOSIX. Master’s Thesis. Kansas State University.

Manhattan, Kansas. December 2002.

[KERB] Thomas, M. “Requirements for Kerberized Internet

Negotiation of Keys,” RFC 3129. June 2001.

[IPROUTE] Waldvogel, M., and others “Scalable High Speed IP

Routing Lookups.” ACM SIGCOMM 1997 Conference. 1997

[NGI] Weiser, M. “What Ever Happened to the Next Generation

Internet?” Communications of the ACM. September 2001.

[LNF] Wronkowski, M. “Linux Netfilter.”

[http://www.csh.rit.edu/~mattw/proj/nf/].

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

APPENDIX A. CHANGE CONTROL PROCEDURES

VERSION CONTROL AND BACKUP PLAN

A standard naming scheme was developed that allowed

versions to be tracked as well as the restoration of

previous versions, should that become necessary. The

naming scheme is as follows: NAME-MM-DD-YYYY-V, where NAME

is the name of the document, MM is the month, DD is the

day, YYYY is the year, and V is the version for that

particular day using the alphabet (ie, ver A, ver B, etc.).

This allowed versions to be found easily and changes to be

tracked throughout the development process.

The backup plan was fairly simple as well. Upon

creation of a new version of any document, the first step

was to save the document locally on either the network

drive or the home computer. The next immediate step was to

email the document to the thesis partner and the originator

of the document, effectively storing a copy on the mail

server. Additionally, an archive of all thesis related

documents was compiled on writeable CD/DVD media, and on

home computers as needed. This provided sufficient

redundancy, and given the version control scheme, it

permitted fairly easy recovery from any loss of data. In

the event of data loss, the procedure would have been to

copy the archive over to the affected machine.

In addition to the backup plan, multiple systems were

maintained on which the most up to date files and pieces of

code could be found. The client machine in the lab was

configured to dual boot into either Windows XP or Red Hat

Linux. Both of these partitions served as repositories for

thesis documents. The source code for the project was

86

stored on both the TPE and on writeable CD. In addition,

versions of the thesis were stored on personal

workstations, USB removable storage and writeable CD.

CONFIGURATION ITEMS AND DESCRIPTION

This project included all the listed files ported or

altered in order to obtain working NAT functionality. A

distinction was made between ported and altered files.

Altered files were existing files that required

modification in order to support NAT. Ported files were

files that did not exist in the working 2.6.5 kernel with

IPv6 connection tracking, and were necessary to obtain NAT

functionality. This code was comprised mostly of NAT files

ported to IPv6. The following is a list of all the altered

or created files within the netfilter suite:

• /include/linux/netfilter_ipv6/ip6_conntrack.h

• /net/ipv6/netfilter/ip6_conntrack_core.c

• /include/linux/netfilter_ipv6/ip6_nat.h

• /net/ipv6/netfilter/ip6_nat_core.c

• /include/linux/netfilter_ipv6/ip6_nat_core.h

• /net/ipv6/netfilter/ip6_nat_helper.c

• /include/linux/netfilter_ipv6/ip6_nat_helper.h

• /net/ipv6/netfilter/ip6_nat_proto_icmp.c

• /net/ipv6/netfilter/ip6_nat_proto_tcp.c

• /net/ipv6/netfilter/ip6_nat_proto_udp.c

• /net/ipv6/netfilter/ip6_nat_proto_unknown.c

• /include/linux/netfilter_ipv6/ip6_nat_protocol.h

• /net/ipv6/netfilter/ip6_nat_rule.c

• /include/linux/netfilter_ipv6/ip6_nat_rule.h

• /net/ipv6/netfilter/ip6_nat_standalone.c

87

• /include/linux/netfilter_ipv6/ip6t_iprange.h

• /net/ipv6/netfilter/ip6t_NETMAP.c

• /net/ipv6/netfilter/ip6t_SAME.c

• /include/linux/netfilter_ipv6/ip6t_SAME.h

• /net/core/netfilter.c

• /home/iptables-1.2.9rc1/extensions/libip6t_SNAT.c

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

APPENDIX B. SPECIFICATION DOCUMENT

INTRODUCTION

The Network Address Translation (NAT) for IPv6 will be

developed using a modified Linux 2.6.5 kernel that supports

connection tracking. Intended users for this application

are any user desiring IPv4 NAT functionality for IPv6.

Specifically, these are users desiring to translate

addresses from a private network to authorized public

network addresses.

The main purpose of this application is to provide NAT

functionality for IPv6. NAT only deals with altering the IP

header fields and checksums in the IPv6 datagram packets.

Additionally, an interface for interaction with the NAT to

allow static binding of IP addresses and assignment of

dynamic IP address ranges is desired. User and system

interactions include calls to and from the kernel module,

calls to the ip6tables, calls to the netfilter module,

which handles packet processing in general, calls to

connection tracking, and reference to information in the

NAT table.

Users will interact with the protocol from a command

line interface by altering the nat table entries to reflect

desired translations. Additional software requirements

include the use of Application Level Gateways (ALGs) to

help any software that alters IP information interact with

the NAT device. These gateways would be designed and

implemented by the producers of the given software.

90

OPERATING ENVIRONMENT

The expected operating environment of this NAT

implementation will be on a networked computer running a

modified version of Red Hat 9.0 design to support

connection tracking interacting with an IPv6 network.

Initially the environment will be a closed, with the NAT

mechanism performing a one-to-one translation; however,

ultimately the implementation will be usable by any person

running the modified Linux 2.6.5 kernel wishing to run NAT

on IPv6. Off-the-shelf tools will be the modified 2.6.5

Linux kernel designed to support connection tracking and a

personal computer capable of being networked and of running

the operating system and capable of networking with an IPv6

network.

The computer running the NAT protocol should be of

sufficient speed to perform the address translation without

any noticeable delay or hindrance to network

communications. The physical environment of the protocol

will be constrained by the physical hardware needed to

implement the NAT protocol. Namely, the requirements the

physical computer and networking devices have will also be

those of the application. Should this application be

deployed in an untrusted environment, special care must be

take to safeguard the NAT device so that it is not turned

off or manipulated, allowing external networks to

communicate directly with the internal networks using their

true IP address.

Users are expected to understand the basics of both

the Linux operating system and IP networking. The user must

know what NAT does and how it performs its job. Expected

91

usage pattern of the NAT protocol will be that of the

network.

INTERFACES

Operation of NAT should be fairly transparent to the

user, therefore only a simple interface to allow static

binding of IP addresses will be provided. It will allow the

NAT protocol to be turned on or off, and will allow the

user to program desired translations into the nat table.

The existing ip6tables will be used as the interface.

Access to the NAT interface will be limited to users

with root privilege.

The interface will be command line, since it was

previously implemented in command line in IPv4 and this

would appear to be the simplest and most efficient method

of interaction.

The interface will consist of commands that allow the

user to perform the tasks of configuring translations,

static bindings, and turning NAT off and on. The interface

will only manipulate the nat table and allow the user to

start and stop the NAT. Since there will be only one

interface, there will not be any inter-interface

dependencies. NAT information will be transferred to and

from the interface as soon as it is updated so that the

interface gives the user accurate information of what the

nat table contains. The NAT interface will still be

functional when there is no networking connection because

the user can still set up a nat table and NAT rules

regardless of whether or not there is connectivity.

SYSTEM OPERATION

The runtime protocol will operate in a passive mode.

Its presence should be transparent to the user. NAT

92

operation will begin after the user invokes the protocol

through the interface, which will activate the NAT

functionality within the netfilter hooks. An overview of

the protocol’s operation is characterized diagrammatically

by the following flow chart. (See Figure 15) Note that in

the diagram the firewall system merely refers to the

computer that receives the packet.

93

Figure 15. Netfilter Packet Flow [NF OVER]

The user interface alters the nat table rules that are

traversed when it is called by one of the netfilter hooks.

94

The application of this development is restricted to a

networking environment. There is no necessity for NAT in a

stand-alone environment. Major components of the

application include: the interface, the nat table, any

modified kernel source code, netfilter and its hooks, and

the user interface to netfilter and ip6tables. The nat

table will be stored in a non-volatile location to

eliminate the necessity of re-entering the translation

mappings every time the machine is rebooted.

DATA TYPES & STORAGE

 The NAT protocol for IPv6 will use the source and

destination addresses, the IP header checksum, and the nat

table, which stores the mappings. All other information

within the IPv6 header, while related to the task of NAT,

is not specific to what the NAT protocol will do. The

source and destination address both tell the IP packet

where to go, and in the case of this implementation, they

will be replaced by desired mappings to hide the true IP

address from the sender or receiver, depending on the type

of NAT employed, preventing them from gaining privileged

knowledge of the network topography.

The source and destination addresses will be stored by

the connection tracking module and read by the netfilter

hooks to determine if any rules exist in the nat tables for

the specific IP conversation. The IP address will then be

translated by ip6tables. The layer 4 header checksum is a

quality of service mechanism that helps assure that the

original packet has remained unchanged. This checksum will

be invalid if either the source or destination IP addresses

are modified, unless the checksum is recalculated to

reflect the changed IP addresses. The NAT mechanism will

95

recalculate this checksum in a manner dependant on the

protocol of the packet traversing the NAT mechanism. The

mappings contained in the nat table will be compared by

ip6tables to the session information saved in connection

tracking to see if rules need to be applied.

PERFORMANCE

A majority of the performance requirements were listed

in the above sections. Basically, the ip6tables will

interact with the NAT code in a manner that does not prove

to be a hindrance to network operations. The exact

threshold for this is not static, but rather it varies from

user to user, since a network administrator with a gigabit

Ethernet LAN may have higher performance requirements than

a home user with a small LAN connecting to the Internet via

a 56K modem.

The maximum number of concurrent users will be the

number of users within the administrator group, as the NAT

rules are only able to altered by a user with administrator

privilege. In general there will be no necessity for

multiple users to alter the nat tables, unless there is

some sort of cooperative environment agreed upon by

multiple users of the LAN. Also, any user that requests to

alter the nat table must have administrator privilege.

The maximum number of concurrent connections will be

limited by the maximum number of ports available multiplied

by the number of public IP addresses the NAT device

maintains for external translation. The expected usage

pattern will be constant. Once configured and operational,

the only further alterations to the nat table should be

when external IP address bindings are reconfigured.

96

The tolerance for error will be fairly low, as any

error in translation will result in undesired network

operation and the probable loss of connectivity to the

Internet. Workload expectations for the protocol will

depend on the amount of network traffic passing through the

computer. Critical resources for this program are Internet

connectivity and adequate processor speed.

PARALLELISM

This NAT development does not require any parallelism,

as it is an in-line function. When a packet enters the NIC

interface netfilter hooks are called. These hooks traverse

a list of processes that have requested access to the

packet in a priority queue. One of these processes is

always ip6tables, and within ip6tables is the NAT code.

While the NAT process is running and manipulating the

packet, there will not be any other processes manipulating

the packet simultaneously.

CONCURRENT ENGINEERING

There will not be any concurrent engineering with

respect to development, testing, and deployment of this

program. As was stated with parallelism, there is no

necessity for parallel access, engineering, or development.

SECURITY

The process will have all of the security

characteristics of ip6tables, the user interface to

netfilter. Currently, ip6tables cannot be edited unless the

user has administrator privileges. Therefore, the NAT

process will not be accessible to any user other than root

or those users with root permissions. Allowing any users

to edit any of the tables for ip6tables would leave the

system open to any number of security violations as a

97

malicious user could set mappings and intercept traffic, as

well as, masquerade as any user on the LAN.

IMPLEMENTATION PLAN

Development of NAT for IPv6 will occur on a modified

2.6.5 Linux kernel designed to support connection tracking.

The necessary IPv4 NAT code will be ported and modified

into the IPv6 environment. Initially, the focus was to

enable connection tracking for IPv6 before the development

of the NAT functionality. However, a modified 2.6.5 Linux

kernel was released that enabled this functionality. From

this point, the nat table to the ip6tables code and its

respective functionality will be introduced. After this

foundation is laid, the desired NAT functionality will be

implemented in a method similar to IPv4. Finally, open-

source testing suites will be used to test module

compatibility, and the MYSEA IPv6 NAT testbed will be used

as method for testing the functionality.

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

APPENDIX C. SOURCE CODE

This appendix contains all the source code for files

within the Linux netfilter suite for IPv6 that were either

altered or created in order to support NAT in IPv6. The

altered files contain the inserted code. The created code

contains a header that declares it as such.

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_CONNTRACK.H

/*
 * Copyright (C)2003 USAGI/WIDE Project
 *
 * Authors:
 * Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp>
 *
 * Based on: include/linux/netfilter_ipv4/ip_conntrack.h
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * 24-May-2004 : Ported application helper data union for later use -
TB MP
 * : Ported NAT helper connection tracking data union for
later use - TB MP
 */

/* per expectation: application helper private data */
union ip6_conntrack_expect_help {
 /* insert conntrack helper private data (expect) here */
 struct ip6_ct_ftp_expect exp_ftp_info;

/*
* * * * * * * * *
 * TB MP - This is where nat helper private data goes. Not ported by
USAGI. This was
 * ported, however it was not used because the thesis only deals with
basic NAT.
 *
* * * * * * * * */

#ifdef CONFIG_IP6_NF_NAT_NEEDED
 union {
 /* insert nat helper private data (expect) here */
 } nat;

100

#endif

 /*TB MP - END NAT CODE*/

};

/*
* * * * * * * * *
 * TB MP - Nat helper information for connection tracking goes here.
Not ported by USAGI.
 * This was ported, however it was not used because the thesis only
deals with basic NAT.
 *
* * * * * * * * */

#ifdef CONFIG_IP6_NF_NAT_NEEDED
#include <linux/netfilter_ipv6/ip6_nat.h>

/* per conntrack: nat application helper private data */
union ip6_conntrack_nat_help {
 /* insert nat helper private data here */

};

#endif

/*TB MP - END NAT CODE*/

101

/NET/IPV6/NETFILTER/IP6_CONNTRACK_CORE.C

/*
 * IPv6 Connection Tracking
 * Linux INET6 implementation
 *
 * Copyright (C)2003 USAGI/WIDE Project
 *
 * Authors:
 * Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp>
 *
 * Based on: net/ipv4/netfilter/ip_conntrack_core.c
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * 24-May-2004: Ported NAT code for ICMP tracking - TB MP
 * : Ported NAT code to reverse connection direction - TB MP
 * : Ported NAT function that expects a connection change -
TB MP
 */

struct ip6_conntrack *
icmp6_error_track(struct sk_buff *skb,
 unsigned int icmp6off,
 enum ip6_conntrack_info *ctinfo,
 unsigned int hooknum)
{

 struct ip6_conntrack_tuple intuple, origtuple;
 struct ip6_conntrack_tuple_hash *h;
 struct ipv6hdr *ip6h;
 struct icmp6hdr hdr;
 struct ipv6hdr inip6h;
 unsigned int inip6off;
 struct ip6_conntrack_protocol *inproto;
 u_int8_t inprotonum;
 unsigned int inprotoff;
 IP6_NF_ASSERT(skb->nfct == NULL);

 ip6h = skb->nh.ipv6h;
 if (skb_copy_bits(skb, icmp6off, &hdr, sizeof(hdr)) != 0) {
 DEBUGP("icmp_error_track: Can't copy ICMPv6 hdr.\n");
 return NULL;
 }

 if (hdr.icmp6_type >= 128){
 return NULL;
 }
 /*
 * Should I ignore invalid ICMPv6 error here ?
 * ex) ICMPv6 error in ICMPv6 error, Fragmented packet, and so
on.
 * - kozakai

102

 */

 /* Why not check checksum in IPv4 conntrack ? - kozakai */
 /* Ignore it if the checksum's bogus. */

 if (csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, skb->len -
icmp6off,
 IPPROTO_ICMPV6,
 skb_checksum(skb, icmp6off,
 skb->len - icmp6off, 0))) {
 DEBUGP("ICMPv6 checksum failed\n");
 return NULL;
 }

 inip6off = icmp6off + sizeof(hdr);

 if (skb_copy_bits(skb, inip6off, &inip6h, sizeof(inip6h)) != 0) {
 DEBUGP("Can't copy inner IPv6 hdr.\n");
 return NULL;
 }

 inprotonum = inip6h.nexthdr;
 inprotoff = ip6_ct_skip_exthdr(skb, inip6off + sizeof(inip6h),
 &inprotonum,
 skb->len - inip6off - sizeof(inip6h));

 if (inprotoff < 0 || inprotoff > skb->len
 || inprotonum == NEXTHDR_FRAGMENT) {
 DEBUGP("icmp6_error: Can't find protocol header in ICMPv6
payload.\n");
 return NULL;
 }

 inproto = ip6_ct_find_proto(inprotonum);
 /* Are they talking about one of our connections? */
 if (!ip6_get_tuple(&inip6h, skb, inprotoff, inprotonum,
 &origtuple, inproto)) {
 DEBUGP("icmp6_error: ! get_tuple p=%u\n", inprotonum);
 return NULL;
 }

 /* Ordinarily, we'd expect the inverted tupleproto, but it's
 been preserved inside the ICMP. */

 if (!invert_tuple(&intuple, &origtuple, inproto)) {
 DEBUGP("icmp6_error_track: Can't invert tuple\n");
 return NULL;
 }

 *ctinfo = IP6_CT_RELATED;
 h = ip6_conntrack_find_get(&intuple, NULL);

103

/*
* * * * * * * * *
 * TB MP - Code necessary for NAT that was not originally ported over
to IPv6 with the USAGI
 * connection tracking port.
 *
* * * * * * * * */
 if (!h) {

 /* Locally generated ICMPs will match inverted if they
 haven't been SNAT'ed yet */
 /* FIXME: NAT code has to handle half-done double NAT --RR
*/
 if (hooknum == NF_IP6_LOCAL_OUT){
 h = ip6_conntrack_find_get(&origtuple, NULL);

 /*TB MP - END NAT CODE*/

 }
 if (!h) {
 DEBUGP("icmp6_error_track: no match\n");
 return NULL;
 }

/*
* * * * * * * * *
 * TB MP - Code necessary for NAT that was not originally ported over
to IPv6 with the USAGI
 * connection tracking port.
 *
* * * * * * * * */

 /*Reverse direction from that found */
 if (DIRECTION(h) != IP6_CT_DIR_REPLY){
 *ctinfo += IP6_CT_IS_REPLY;
 }
 /*TB MP - END NAT CODE*/

 } else {
 if (DIRECTION(h) == IP6_CT_DIR_REPLY){
 *ctinfo += IP6_CT_IS_REPLY;
 }
 }

 /* Update skb to refer to this connection */
 skb->nfct = &h->ctrack->infos[*ctinfo];
 return h->ctrack;
}

/*
* * * * * * * * *
 * TB MP - Code necessary for NAT that was not originally ported over
to IPv6 with the USAGI
 * connection tracking port.

104

 *
* * * * * * * * */
int ip6_conntrack_change_expect(struct ip6_conntrack_expect *expect,
 struct ip6_conntrack_tuple *newtuple)
{
 int ret;
 MUST_BE_READ_LOCKED(&ip6_conntrack_lock);
 WRITE_LOCK(&ip6_conntrack_expect_tuple_lock);
 DEBUGP("change_expect:\n");
 DEBUGP("exp tuple: "); DUMP_TUPLE(&expect->tuple);
 DEBUGP("exp mask: "); DUMP_TUPLE(&expect->mask);
 DEBUGP("newtuple: "); DUMP_TUPLE(newtuple);
 if (expect->ct_tuple.dst.protonum == 0) {
 /* Never seen before */
 DEBUGP("change expect: never seen before\n");
 if (!ip6_ct_tuple_equal(&expect->tuple, newtuple)
 && LIST_FIND(&ip6_conntrack_expect_list, expect_clash,
 struct ip6_conntrack_expect *, newtuple, &expect->mask))

{

 /* Force NAT to find an unused tuple */
 ret = -1;
 } else {

memcpy(&expect->ct_tuple, &expect->tuple,
sizeof(expect->tuple));
memcpy(&expect->tuple, newtuple, sizeof(expect-
>tuple));

 ret = 0;
 }
 } else {
 /* Resent packet */
 DEBUGP("change expect: resent packet\n");
 if (ip6_ct_tuple_equal(&expect->tuple, newtuple)) {
 ret = 0;
 } else {
 /* Force NAT to choose again the same port */
 ret = -1;
 }
 }
 WRITE_UNLOCK(&ip6_conntrack_expect_tuple_lock);
 return ret;
}

/* TB MP - END NAT CODE*/

105

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ip_nat.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _IP6_NAT_H
#define _IP6_NAT_H
#include <linux/netfilter_ipv6.h>
#include <linux/netfilter_ipv6/ip6_conntrack_tuple.h>

#define IP6_NAT_MAPPING_TYPE_MAX_NAMELEN 16

enum ip6_nat_manip_type
{
 IP6_NAT_MANIP_SRC,
 IP6_NAT_MANIP_DST
};

#ifndef CONFIG_IP6_NF_NAT_LOCAL
/* SRC manip occurs only on POST_ROUTING */
#define HOOK2MANIP(hooknum) ((hooknum) != NF_IP6_POST_ROUTING)
#else
/* SRC manip occurs POST_ROUTING or LOCAL_IN */
#define HOOK2MANIP(hooknum) ((hooknum) != NF_IP6_POST_ROUTING &&
(hooknum) != NF_IP6_LOCAL_IN)
#endif

#define IP6_NAT_RANGE_MAP_IPS 1
#define IP6_NAT_RANGE_PROTO_SPECIFIED 2
/* Used internally by get_unique_tuple(). */
#define IP6_NAT_RANGE_FULL 4

106

/* NAT sequence number modifications */
struct ip6_nat_seq {
 /* position of the last TCP sequence number
 * modification (if any) */
 u_int32_t correction_pos;
 /* sequence number offset before and after last modification */
 int32_t offset_before, offset_after;
};

/* Single range specification. */
struct ip6_nat_range
{
 /* Set to OR of flags above. */
 unsigned int flags;

 /* Inclusive: network order. */
 struct in6_addr min_ip, max_ip;

 /* Inclusive: network order */
 union ip6_conntrack_manip_proto min, max;
};

/* A range consists of an array of 1 or more ip6_nat_range */
struct ip6_nat_multi_range
{
 unsigned int rangesize;

 /* hangs off end. */
 struct ip6_nat_range range[1];
};

/* Worst case: local-out manip + 1 post-routing, and reverse dirn. */
#define IP6_NAT_MAX_MANIPS (2*3)

struct ip6_nat_info_manip
{
 /* The direction. */
 u_int8_t direction;

 /* Which hook the manipulation happens on. */
 u_int8_t hooknum;

 /* The manipulation type. */
 u_int8_t maniptype;

 /* Manipulations to occur at each conntrack in this dirn. */
 struct ip6_conntrack_manip manip;
};

#ifdef __KERNEL__
#include <linux/list.h>
#include <linux/netfilter_ipv6/lockhelp.h>

/* Protects NAT hash tables, and NAT-private part of conntracks. */
DECLARE_RWLOCK_EXTERN(ip6_nat_lock);

/* Hashes for by-source and IP/protocol. */

107

struct ip6_nat_hash
{
 struct list_head list;

 /* conntrack we're embedded in: NULL if not in hash. */
 struct ip6_conntrack *conntrack;
};

/* The structure embedded in the conntrack structure. */
struct ip6_nat_info
{
 /* Set to zero when conntrack created: bitmask of maniptypes */
 int initialized;

 unsigned int num_manips;

 /* Manipulations to be done on this conntrack. */
 struct ip6_nat_info_manip manips[IP6_NAT_MAX_MANIPS];

 struct ip6_nat_hash bysource, byipsproto;

 /* Helper (NULL if none). */
 struct ip6_nat_helper *helper;

 struct ip6_nat_seq seq[IP6_CT_DIR_MAX];
};

/* Set up the info structure to map into this range. */
extern unsigned int ip6_nat_setup_info(struct ip6_conntrack *conntrack,
 const struct ip6_nat_multi_range *mr,
 unsigned int hooknum);

/* Is this tuple already taken? (not by us)*/
extern int ip6_nat_used_tuple(const struct ip6_conntrack_tuple *tuple,
 const struct ip6_conntrack *ignored_conntrack);

/* Calculate relative checksum. */
extern u_int16_t ip6_nat_cheat_check(struct in6_addr oldvalinv,
 struct in6_addr newval,
 u_int16_t oldcheck);

extern u_int16_t ip6_int_nat_cheat_check(u_int32_t oldvalinv,
 u_int32_t newval,
 u_int16_t oldcheck);
#endif /*__KERNEL__*/
#endif

108

/NET/IPV6/NETFILTER/IP6_NAT_CORE.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_core.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* NAT for netfilter; shared with compatibility layer. */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/netfilter_ipv6.h>
#include <linux/vmalloc.h>
#include <net/checksum.h>
#include <net/icmp.h>
#include <net/ipv6.h>
#include <net/tcp.h> /* For tcp_prot in getorigdst */
#include <linux/icmpv6.h>
#include <linux/udp.h>

#define IPV6_HDR_LEN (sizeof(struct ipv6hdr))
#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock)
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock)

109

#include <linux/netfilter_ipv6/ip6_conntrack.h>
#include <linux/netfilter_ipv6/ip6_conntrack_core.h>
#include <linux/netfilter_ipv6/ip6_conntrack_protocol.h>
#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>
#include <linux/netfilter_ipv6/ip6_nat_helper.h>
#include <linux/netfilter_ipv6/ip6_conntrack_helper.h>
#include <linux/netfilter_ipv4/listhelp.h>

#if 0
#define DEBUGP printk
#else
#define DEBUGP(format, args...)
#endif

DECLARE_RWLOCK(ip6_nat_lock);
DECLARE_RWLOCK_EXTERN(ip6_conntrack_lock);

/* Calculated at init based on memory size */
static unsigned int ip6_nat_htable_size;

static struct list_head *bysource;
static struct list_head *byipsproto;
LIST_HEAD(ip6_protos);
LIST_HEAD(ip6_helpers);

extern struct ip6_nat_protocol ip6_unknown_nat_protocol;

/* We keep extra hashes for each conntrack, for fast searching. */
static inline size_t
 hash_by_ipsproto(struct in6_addr src, struct in6_addr dst, u_int16_t
proto)
{
 /* Modified src and dst, to ensure we don't create two
 identical streams. */

 return (src.s6_addr32[0] + src.s6_addr32[1] + src.s6_addr32[2] +
src.s6_addr32[3] + dst.s6_addr32[0] + dst.s6_addr32[1] +
dst.s6_addr32[2] + dst.s6_addr32[3] + proto) % ip6_nat_htable_size;
}

static inline size_t
hash_by_src(const struct ip6_conntrack_manip *manip, u_int16_t proto)
{

 /* Original src, to ensure we map it consistently if poss. */
 return (manip->ip.s6_addr32[0] + manip->ip.s6_addr32[1] + manip-
>ip.s6_addr32[2] + manip->ip.s6_addr32[3] + manip->u.all + proto) %
ip6_nat_htable_size;
}

/* Noone using conntrack by the time this called. */
static void ip6_nat_cleanup_conntrack(struct ip6_conntrack *conn)
{

 struct ip6_nat_info *info = &conn->nat.info;

110

 unsigned int hs, hp;

 if (!info->initialized){
 return;
 }

 IP6_NF_ASSERT(info->bysource.conntrack);
 IP6_NF_ASSERT(info->byipsproto.conntrack);

 hs = hash_by_src(&conn->tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src,
 conn->tuplehash[IP6_CT_DIR_ORIGINAL]
 .tuple.dst.protonum);

 hp = hash_by_ipsproto(conn-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip,
 conn-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip,
 conn->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.dst.protonum);

 WRITE_LOCK(&ip6_nat_lock);
 LIST_DELETE(&bysource[hs], &info->bysource);
 LIST_DELETE(&byipsproto[hp], &info->byipsproto);
 WRITE_UNLOCK(&ip6_nat_lock);
}

/* We do checksum mangling, so if they were wrong before they're still
 * wrong. Also works for incomplete packets (eg. ICMP dest
 * unreachables.) */

static inline int cmp_proto(const struct ip6_nat_protocol *i, int
proto)
{
 return i->protonum == proto;
}

struct ip6_nat_protocol *
ip6_find_nat_proto(u_int16_t protonum)
{

 struct ip6_nat_protocol *i;
 MUST_BE_READ_LOCKED(&ip6_nat_lock);
 i = LIST_FIND(&ip6_protos, cmp_proto, struct ip6_nat_protocol *,
protonum);
 if (!i){
 i = &ip6_unknown_nat_protocol;
 }
 return i;
}

/* Is this tuple already taken? (not by us) */
int
ip6_nat_used_tuple(const struct ip6_conntrack_tuple *tuple,
 const struct ip6_conntrack *ignored_conntrack)
{

111

 /* Conntrack tracking doesn't keep track of outgoing tuples; only
 incoming ones. NAT means they don't have a fixed mapping,
 so we invert the tuple and look for the incoming reply.
 We could keep a separate hash if this proves too slow. */

 struct ip6_conntrack_tuple reply;
 ip6_invert_tuplepr(&reply, tuple);

 return ip6_conntrack_tuple_taken(&reply, ignored_conntrack);
}

/* Does tuple + the source manip come within the range mr */
static int
in_range(const struct ip6_conntrack_tuple *tuple,
 const struct ip6_conntrack_manip *manip,
 const struct ip6_nat_multi_range *mr)
{
 struct ip6_nat_protocol *proto = ip6_find_nat_proto(tuple-
>dst.protonum);
 unsigned int i;
 struct ip6_conntrack_tuple newtuple = { *manip, tuple->dst };

 for (i = 0; i < mr->rangesize; i++) {
 /* If we are allowed to map IPs, then we must be in the
 range specified, otherwise we must be unchanged. */
 if (mr->range[i].flags & IP6_NAT_RANGE_MAP_IPS) {
 if (ntohl(newtuple.src.ip.s6_addr32[0]) < ntohl(mr-
>range[i].min_ip.s6_addr32[0])
 || (ntohl(newtuple.src.ip.s6_addr32[0])
 > ntohl(mr->range[i].max_ip.s6_addr32[0]))){
 continue;
 }
 } else {

 if ((newtuple.src.ip.s6_addr32[0] != tuple->src.ip.s6_addr32[0]) ||
(newtuple.src.ip.s6_addr32[1] != tuple->src.ip.s6_addr32[1]) ||
(newtuple.src.ip.s6_addr32[2] != tuple->src.ip.s6_addr32[2]) ||
(newtuple.src.ip.s6_addr32[3] != tuple->src.ip.s6_addr32[3])){
 continue;
 }

 }

 if (!(mr->range[i].flags & IP6_NAT_RANGE_PROTO_SPECIFIED)
 || proto->in_range(&newtuple, IP6_NAT_MANIP_SRC,
 &mr->range[i].min, &mr->range[i].max)){

 return 1;
 }
 }
 return 0;
}

static inline int
src_cmp(const struct ip6_nat_hash *i,
 const struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_multi_range *mr)

112

{
 return (i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.dst.protonum
 == tuple->dst.protonum
 && (i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[0]
 == tuple->src.ip.s6_addr32[0]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[1]
 == tuple->src.ip.s6_addr32[1]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[2]
 == tuple->src.ip.s6_addr32[2]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.ip.s6_addr32[3]
 == tuple->src.ip.s6_addr32[3])
 && i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src.u.all
 == tuple->src.u.all
 && in_range(tuple,
 &i->conntrack->tuplehash[IP6_CT_DIR_ORIGINAL]
 .tuple.src,
 mr));
}

/* Only called for SRC manip */
static struct ip6_conntrack_manip *
find_appropriate_src(const struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_multi_range *mr)
{
 unsigned int h = hash_by_src(&tuple->src, tuple->dst.protonum);
 struct ip6_nat_hash *i;
 MUST_BE_READ_LOCKED(&ip6_nat_lock);
 i = LIST_FIND(&bysource[h], src_cmp, struct ip6_nat_hash *,
tuple, mr);
 if (i){
 return &i->conntrack-
>tuplehash[IP6_CT_DIR_ORIGINAL].tuple.src;
 }
 else{

 return NULL;
 }
}

/* Simple way to iterate through all. */
static inline int fake_cmp(const struct ip6_nat_hash *i,
 struct in6_addr src, struct in6_addr dst,
u_int16_t protonum,
 unsigned int *score,
 const struct ip6_conntrack *conntrack)
{
 /* Compare backwards: we're dealing with OUTGOING tuples, and
 inside the conntrack is the REPLY tuple. Don't count this
 conntrack. */
 if (i->conntrack != conntrack

113

 && (i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[0] ==
dst.s6_addr32[0]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[1] ==
dst.s6_addr32[1]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[2] ==
dst.s6_addr32[2]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip.s6_addr32[3] ==
dst.s6_addr32[3])
 && (i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[0] ==
src.s6_addr32[0]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[1] ==
src.s6_addr32[1]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[2] ==
src.s6_addr32[2]
 && i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip.s6_addr32[3] ==
src.s6_addr32[3])
 && (i->conntrack-
>tuplehash[IP6_CT_DIR_REPLY].tuple.dst.protonum
 == protonum))
 (*score)++;
 return 0;
}

static inline unsigned int
count_maps(struct in6_addr src, struct in6_addr dst, u_int16_t
protonum,
 const struct ip6_conntrack *conntrack)
{
 unsigned int score = 0;
 unsigned int h;

 MUST_BE_READ_LOCKED(&ip6_nat_lock);
 h = hash_by_ipsproto(src, dst, protonum);
 LIST_FIND(&byipsproto[h], fake_cmp, struct ip6_nat_hash *,
 src, dst, protonum, &score, conntrack);

 return score;
}

/* For [FUTURE] fragmentation handling, we want the least-used
 src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
 if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
 1-65535, we don't do pro-rata allocation based on ports; we choose
 the ip with the lowest src-ip/dst-ip/proto usage.

 If an allocation then fails (eg. all 6 ports used in the 1.2.3.4
 range), we eliminate that and try again. This is not the most
 efficient approach, but if you're worried about that, don't hand us
 ranges you don't really have. */

114

static struct ip6_nat_range *
find_best_ips_proto(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_multi_range *mr,
 const struct ip6_conntrack *conntrack,
 unsigned int hooknum)
{
 unsigned int i;
 struct {
 const struct ip6_nat_range *range;
 unsigned int score;
 struct ip6_conntrack_tuple tuple;
 } best = { NULL, 0xFFFFFFFF };
 struct in6_addr *var_ipp, *other_ipp, saved_ip, orig_dstip;
 /*static unsigned int randomness;*/

 if (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_SRC) {
 var_ipp = &tuple->src.ip;
 saved_ip = tuple->dst.ip;
 other_ipp = &tuple->dst.ip;
 } else {
 var_ipp = &tuple->dst.ip;
 saved_ip = tuple->src.ip;
 other_ipp = &tuple->src.ip;
 }
 /* Don't do do_extra_mangle unless necessary (overrides
 explicit socket bindings, for example) */
 orig_dstip = tuple->dst.ip;

 IP6_NF_ASSERT(mr->rangesize >= 1);
 for (i = 0; i < mr->rangesize; i++) {
 /* Host order */
 struct in6_addr minip, maxip; /*, j;*/

 /* Don't do ranges which are already eliminated. */
 if (mr->range[i].flags & IP6_NAT_RANGE_FULL) {
 continue;
 }

 if (mr->range[i].flags & IP6_NAT_RANGE_MAP_IPS) {
 minip.s6_addr32[0] = ntohl(mr-
>range[i].min_ip.s6_addr32[0]);
 minip.s6_addr32[1] = ntohl(mr-
>range[i].min_ip.s6_addr32[1]);
 minip.s6_addr32[2] = ntohl(mr-
>range[i].min_ip.s6_addr32[2]);
 minip.s6_addr32[3] = ntohl(mr-
>range[i].min_ip.s6_addr32[3]);

 maxip.s6_addr32[0] = ntohl(mr-
>range[i].max_ip.s6_addr32[0]);
 maxip.s6_addr32[1] = ntohl(mr-
>range[i].max_ip.s6_addr32[1]);
 maxip.s6_addr32[2] = ntohl(mr-
>range[i].max_ip.s6_addr32[2]);
 maxip.s6_addr32[3] = ntohl(mr-
>range[i].max_ip.s6_addr32[3]);
 }

115

 else {
 minip.s6_addr32[0] = maxip.s6_addr32[0] = var_ipp-
>s6_addr32[0];
 minip.s6_addr32[1] = maxip.s6_addr32[1] = var_ipp-
>s6_addr32[1];
 minip.s6_addr32[2] = maxip.s6_addr32[2] = var_ipp-
>s6_addr32[2];
 minip.s6_addr32[3] = maxip.s6_addr32[3] = var_ipp-
>s6_addr32[3];
 }

/*
* * * * * * * * *
 * TB MP - Not needed by our particular implementation. This function
was ported, but commented out because it was not tested, and was not
part of our implementation. Our basic NAT implementation did
 * not necessitate port translation or multiple IP address translation,
and so calculating
 * random IP addresses to use was not needed.
 *
* * * * * * * * */

 /*
 randomness++;
 for (j = 0; j < maxip.s6_addr32[0] - minip.s6_addr32[0] +
1; j++) {
 unsigned int score;

 var_ipp->s6_addr32[0] = htonl(minip.s6_addr32[0] +
(randomness + j)
 % (maxip.s6_addr32[0] -
minip.s6_addr32[0] + 1));

 Reset the other ip in case it was mangled by
 do_extra_mangle last time.
 other_ipp->s6_addr32[0] = saved_ip.s6_addr32[0];

#ifdef CONFIG_IP6_NF_NAT_LOCAL
 if (hooknum == NF_IP6_LOCAL_OUT
 && var_ipp->s6_addr32[0] !=
orig_dstip.s6_addr32[0]
 && !do_extra_mangle(var_ipp->s6_addr32[0],
other_ipp.s6_addr32[0])) {
 DEBUGP("Range %u %u:%u:%u:%u rt failed!\n",
 i, NIP6(var_ipp->s6_addr32[0]));
 Can't route? This whole range part is
 probably screwed, but keep trying
 anyway.
 continue;
 }
#endif

 Count how many others map onto this.
 score = count_maps(tuple->src.ip.s6_addr32[0], tuple-
>dst.ip.s6_addr32[0],
 tuple->dst.protonum, conntrack);

116

 if (score < best.score) {
 Optimization: doesn't get any better than
 this.
 if (score == 0)
 return (struct ip6_nat_range *)
 &mr->range[i];

 best.score = score;
 best.tuple = *tuple;
 best.range = &mr->range[i];
 }
 }
 */
 /* TB MP – END OF NAT CODE */

 }
 *tuple = best.tuple;

 /* Discard const. */
 return (struct ip6_nat_range *)best.range;
}

/* Fast version doesn't iterate through hash chains, but only handles
 common case of single IP address (null NAT, masquerade) */
static struct ip6_nat_range *
find_best_ips_proto_fast(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_multi_range *mr,
 const struct ip6_conntrack *conntrack,
 unsigned int hooknum)
{

 if (mr->rangesize != 1
 || (mr->range[0].flags & IP6_NAT_RANGE_FULL)
 || ((mr->range[0].flags & IP6_NAT_RANGE_MAP_IPS)
 && (mr->range[0].min_ip.s6_addr32[0] != mr-
>range[0].max_ip.s6_addr32[0]
 || mr->range[0].min_ip.s6_addr32[1] != mr-
>range[0].max_ip.s6_addr32[1]
 || mr->range[0].min_ip.s6_addr32[2] != mr-
>range[0].max_ip.s6_addr32[2]
 || mr->range[0].min_ip.s6_addr32[3] != mr-
>range[0].max_ip.s6_addr32[3])

)){

 return find_best_ips_proto(tuple, mr, conntrack, hooknum);
 }
 if (mr->range[0].flags & IP6_NAT_RANGE_MAP_IPS) {
 if (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_SRC){

 tuple->src.ip = mr->range[0].min_ip;
 }
 else {

117

 /* Only do extra mangle when required (breaks
 socket binding) */
#ifdef CONFIG_IP6_NF_NAT_LOCAL
 if ((tuple->dst.ip.s6_addr32[0] != mr-
>range[0].min_ip.s6_addr32[0]
 || tuple->dst.ip.s6_addr32[1] != mr-
>range[0].min_ip.s6_addr32[1]
 || tuple->dst.ip.s6_addr32[2] != mr-
>range[0].min_ip.s6_addr32[2]
 || tuple->dst.ip.s6_addr32[3] != mr-
>range[0].min_ip.s6_addr32[3])
 && hooknum == NF_IP6_LOCAL_OUT){

 return NULL;
 }
#endif

 tuple->dst.ip = mr->range[0].min_ip;
 }
 }

 /* Discard const. */

 return (struct ip6_nat_range *)&mr->range[0];
}

static int
get_unique_tuple(struct ip6_conntrack_tuple *tuple,
 const struct ip6_conntrack_tuple *orig_tuple,
 const struct ip6_nat_multi_range *mrr,
 struct ip6_conntrack *conntrack,
 unsigned int hooknum)
{

 struct ip6_nat_protocol *proto
 = ip6_find_nat_proto(orig_tuple->dst.protonum);
 struct ip6_nat_range *rptr;
 unsigned int i;
 int ret;

 /* We temporarily use flags for marking full parts, but we
 always clean up afterwards */
 struct ip6_nat_multi_range *mr = (void *)mrr;

 /* 1) If this srcip/proto/src-proto-part is currently mapped,
 and that same mapping gives a unique tuple within the given
 range, use that.

 This is only required for source (ie. NAT/masq) mappings.
 So far, we don't do local source mappings, so multiple
 manips not an issue. */

 if (hooknum == NF_IP6_POST_ROUTING) {

118

 struct ip6_conntrack_manip *manip;

 manip = find_appropriate_src(orig_tuple, mr);

 if (manip) {
 /* Apply same source manipulation. */
 *tuple = ((struct ip6_conntrack_tuple)
 { *manip, orig_tuple->dst });
 DEBUGP("get_unique_tuple: Found current src map\n");

 if (!ip6_nat_used_tuple(tuple, conntrack)){
 return 1;
 }
 }
 }

 /* 2) Select the least-used IP/proto combination in the given
 range.
 */
 *tuple = *orig_tuple;

 while ((rptr = find_best_ips_proto_fast(tuple, mr, conntrack,
hooknum))
 != NULL) {
 DEBUGP("Found best for "); DUMP_TUPLE(tuple);
 /* 3) The per-protocol part of the manip is made to
 map into the range to make a unique tuple. */

 /* Only bother mapping if it's not already in range
 and unique */

 if ((!(rptr->flags & IP6_NAT_RANGE_PROTO_SPECIFIED)
 || proto->in_range(tuple, HOOK2MANIP(hooknum),
 &rptr->min, &rptr->max))
 && !ip6_nat_used_tuple(tuple, conntrack)) {
 ret = 1;

 goto clear_fulls;
 } else {

 if (proto->unique_tuple(tuple, rptr,
 HOOK2MANIP(hooknum),
 conntrack)) {
 /* Must be unique. */
 IP6_NF_ASSERT(!ip6_nat_used_tuple(tuple,
 conntrack));

 ret = 1;
 goto clear_fulls;

 } else if (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_DST)
{
 /* Try implicit source NAT; protocol
 may be able to play with ports to

119

 make it unique. */

 struct ip6_nat_range r
 = { IP6_NAT_RANGE_MAP_IPS,
 tuple->src.ip, tuple->src.ip,
 { 0 }, { 0 } };
 DEBUGP("Trying implicit mapping\n");

 if (proto->unique_tuple(tuple, &r,
 IP6_NAT_MANIP_SRC,
 conntrack)) {
 /* Must be unique. */

 IP6_NF_ASSERT(!ip6_nat_used_tuple
 (tuple, conntrack));

 ret = 1;
 goto clear_fulls;
 }
 }
 DEBUGP("Protocol can't get unique tuple %u.\n",
 hooknum);
 }

 /* Eliminate that from range, and try again. */

 rptr->flags |= IP6_NAT_RANGE_FULL;
 *tuple = *orig_tuple;
 }
 ret = 0;

 clear_fulls:
 /* Clear full flags. */
 IP6_NF_ASSERT(mr->rangesize >= 1);
 for (i = 0; i < mr->rangesize; i++)
 mr->range[i].flags &= ~IP6_NAT_RANGE_FULL;

 return ret;
}

static inline int
helper_cmp(const struct ip6_nat_helper *helper,
 const struct ip6_conntrack_tuple *tuple)
{
 return ip6_ct_tuple_mask_cmp(tuple, &helper->tuple, &helper-
>mask);
}

/* Where to manip the reply packets (will be reverse manip). */
static unsigned int opposite_hook[NF_IP6_NUMHOOKS]
= { [NF_IP6_PRE_ROUTING] = NF_IP6_POST_ROUTING,
 [NF_IP6_POST_ROUTING] = NF_IP6_PRE_ROUTING,
#ifdef CONFIG_IP6_NF_NAT_LOCAL
 [NF_IP6_LOCAL_OUT] = NF_IP6_LOCAL_IN,
 [NF_IP6_LOCAL_IN] = NF_IP6_LOCAL_OUT,
#endif

120

};

unsigned int
ip6_nat_setup_info(struct ip6_conntrack *conntrack,
 const struct ip6_nat_multi_range *mr,
 unsigned int hooknum)
{
 struct ip6_conntrack_tuple new_tuple, inv_tuple, reply;
 struct ip6_conntrack_tuple orig_tp;
 struct ip6_nat_info *info = &conntrack->nat.info;
 int in_hashes = info->initialized;

 MUST_BE_WRITE_LOCKED(&ip6_nat_lock);

 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING
 || hooknum == NF_IP6_POST_ROUTING
 || hooknum == NF_IP6_LOCAL_OUT);

 IP6_NF_ASSERT(info->num_manips < IP6_NAT_MAX_MANIPS);
 IP6_NF_ASSERT(!(info->initialized & (1 << HOOK2MANIP(hooknum))));

 /* What we've got will look like inverse of reply. Normally
 this is what is in the conntrack, except for prior
 manipulations (future optimization: if num_manips == 0,
 orig_tp =
 conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */

 ip6_invert_tuplepr(&orig_tp,
 &conntrack->tuplehash[IP6_CT_DIR_REPLY].tuple);
#if 1
 {
 unsigned int i;
 DEBUGP("Hook %u (%s), ", hooknum,
 HOOK2MANIP(hooknum)==IP6_NAT_MANIP_SRC ? "SRC" : "DST");
 DUMP_TUPLE(&orig_tp);

 DEBUGP("Range %p: ", mr);
 for (i = 0; i < mr->rangesize; i++) {
 DEBUGP("%u:%s%s%s %x:%x:%x:%x:%x:%x:%x:%x -
%x:%x:%x:%x:%x:%x:%x:%x %u - %u\n",
 i,
 (mr->range[i].flags & IP6_NAT_RANGE_MAP_IPS)
 ? " MAP_IPS" : "",
 (mr->range[i].flags
 & IP6_NAT_RANGE_PROTO_SPECIFIED)
 ? " PROTO_SPECIFIED" : "",
 (mr->range[i].flags & IP6_NAT_RANGE_FULL)
 ? " FULL" : "",
 NIP6(mr->range[i].min_ip),
 NIP6(mr->range[i].max_ip),
 mr->range[i].min.all,
 mr->range[i].max.all);
 }
 }
#endif

 do {

121

 if (!get_unique_tuple(&new_tuple, &orig_tp, mr, conntrack,
 hooknum)) {
 DEBUGP("ip6_nat_setup_info: Can't get unique for
%p.\n",
 conntrack);
 return NF_DROP;
 }

#if 0

 DEBUGP("Hook %u (%s) %p\n", hooknum,
 HOOK2MANIP(hooknum)==IP6_NAT_MANIP_SRC ? "SRC" :
"DST",
 conntrack);
 DEBUGP("Original: ");

 DUMP_TUPLE(&orig_tp);
 DEBUGP("New: ");

 DUMP_TUPLE(&new_tuple);
#endif

 /* We now have two tuples (SRCIP/SRCPT/DSTIP/DSTPT):
 the original (A/B/C/D') and the mangled one (E/F/G/H').
 We're only allowed to work with the SRC per-proto
 part, so we create inverses of both to start, then
 derive the other fields we need. */

 /* Reply connection: simply invert the new tuple
 (G/H/E/F') */

 ip6_invert_tuplepr(&reply, &new_tuple);

 /* Alter conntrack table so it recognizes replies.
 If fail this race (reply tuple now used), repeat. */

 } while (!ip6_conntrack_alter_reply(conntrack, &reply));

 /* FIXME: We can simply used existing conntrack reply tuple
 here --RR */
 /* Create inverse of original: C/D/A/B' */

 ip6_invert_tuplepr(&inv_tuple, &orig_tp);

 /* Has source changed?. */

 if (!ip6_ct_tuple_src_equal(&new_tuple, &orig_tp)) {

 /* In this direction, a source manip. */
 info->manips[info->num_manips++] =

122

 ((struct ip6_nat_info_manip)
 { IP6_CT_DIR_ORIGINAL, hooknum,
 IP6_NAT_MANIP_SRC, new_tuple.src });

 IP6_NF_ASSERT(info->num_manips < IP6_NAT_MAX_MANIPS);

 /* In the reverse direction, a destination manip. */
 info->manips[info->num_manips++] =
 ((struct ip6_nat_info_manip)
 { IP6_CT_DIR_REPLY, opposite_hook[hooknum],
 IP6_NAT_MANIP_DST, orig_tp.src });
 IP6_NF_ASSERT(info->num_manips <= IP6_NAT_MAX_MANIPS);
 }

 /* Has destination changed? */
 if (!ip6_ct_tuple_dst_equal(&new_tuple, &orig_tp)) {
 /* In this direction, a destination manip */
 info->manips[info->num_manips++] =
 ((struct ip6_nat_info_manip)
 { IP6_CT_DIR_ORIGINAL, hooknum,
 IP6_NAT_MANIP_DST, reply.src });
 IP6_NF_ASSERT(info->num_manips < IP6_NAT_MAX_MANIPS);
 /* In the reverse direction, a source manip. */
 info->manips[info->num_manips++] =
 ((struct ip6_nat_info_manip)
 { IP6_CT_DIR_REPLY, opposite_hook[hooknum],
 IP6_NAT_MANIP_SRC, inv_tuple.src });

 IP6_NF_ASSERT(info->num_manips <= IP6_NAT_MAX_MANIPS);
 }

 /* If there's a helper, assign it; based on new tuple. */
 if (!conntrack->master){
 info->helper = LIST_FIND(&ip6_helpers, helper_cmp, struct
ip6_nat_helper *,
 &reply);
 }
 /* It's done. */
 info->initialized |= (1 << HOOK2MANIP(hooknum));
 if (in_hashes) {
 IP6_NF_ASSERT(info->bysource.conntrack);
 ip6_replace_in_hashes(conntrack, info);
 } else {
 ip6_place_in_hashes(conntrack, info);
 }
 return NF_ACCEPT;
}

void ip6_replace_in_hashes(struct ip6_conntrack *conntrack,
 struct ip6_nat_info *info)
{

 /* Source has changed, so replace in hashes. */
 unsigned int srchash

123

 = hash_by_src(&conntrack->tuplehash[IP6_CT_DIR_ORIGINAL]
 .tuple.src,
 conntrack->tuplehash[IP6_CT_DIR_ORIGINAL]
 .tuple.dst.protonum);
 /* We place packet as seen OUTGOUNG in byips_proto hash
 (ie. reverse dst and src of reply packet. */
 unsigned int ipsprotohash
 = hash_by_ipsproto(conntrack->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.dst.ip,
 conntrack->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.src.ip,
 conntrack->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.dst.protonum);

 IP6_NF_ASSERT(info->bysource.conntrack == conntrack);
 MUST_BE_WRITE_LOCKED(&ip6_nat_lock);
 list_del(&info->bysource.list);
 list_del(&info->byipsproto.list);
 list_prepend(&bysource[srchash], &info->bysource);
 list_prepend(&byipsproto[ipsprotohash], &info->byipsproto);
}

void ip6_place_in_hashes(struct ip6_conntrack *conntrack,
 struct ip6_nat_info *info)
{
 unsigned int srchash
 = hash_by_src(&conntrack->tuplehash[IP6_CT_DIR_ORIGINAL]
 .tuple.src,
 conntrack->tuplehash[IP6_CT_DIR_ORIGINAL]
 .tuple.dst.protonum);
 /* We place packet as seen OUTGOUNG in byips_proto hash
 (ie. reverse dst and src of reply packet. */
 unsigned int ipsprotohash
 = hash_by_ipsproto(conntrack->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.dst.ip,
 conntrack->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.src.ip,
 conntrack->tuplehash[IP6_CT_DIR_REPLY]
 .tuple.dst.protonum);

 IP6_NF_ASSERT(!info->bysource.conntrack);
 MUST_BE_WRITE_LOCKED(&ip6_nat_lock);
 info->byipsproto.conntrack = conntrack;
 info->bysource.conntrack = conntrack;
 list_prepend(&bysource[srchash], &info->bysource);
 list_prepend(&byipsproto[ipsprotohash], &info->byipsproto);
}

/*
* * * * * * * * *
 * TB MP - The manip_pkt function necessitated some changes due to the
introduction of
 * a pseudo-header to ICMPv6 header checksum calculation and the
removal of the IP header

124

 * checksum. In IPv4, the checksum of the ICMP packet was calculated
first, then the IP
 * addresses were translated and an IP checksum calculated. IPv6 no
longer has a checksum
 * in the header, so those checksum calculations were removed. Since
the translated IP addresses need to be part of the ICMP pseudo-header,
the order of operations in this function
 * was switched so that the IP addresses are translated first, then the
upper layer header gets
 * manipulated.
 *
* * * * * * * * */

/* Returns true if succeeded. */
static int
manip_pkt(u_int16_t proto,
 struct sk_buff **pskb,
 unsigned int ipv6hdroff,
 const struct ip6_conntrack_manip *manip,
 enum ip6_nat_manip_type maniptype)
{
 struct ipv6hdr *ipv6h;
 (*pskb)->nfcache |= NFC_ALTERED;
 if (!skb_ip6_make_writable(pskb, ipv6hdroff+sizeof(ipv6h))){
 return 0;
 }

 ipv6h = (void *)(*pskb)->data + ipv6hdroff;
 if (maniptype == IP6_NAT_MANIP_SRC) {

/*
* * * * * * * * *
 * TB MP - IPv6 headers do not have checksums, therefore these checksum
calculations are
 * not necessary. The IPv4 code that was here:
 *
 * iph->check = ip_nat_cheat_check(~iph->saddr, manip->ip,
 * iph->check);
 *
* * * * * * * * */

 ipv6h->saddr = manip->ip;

 } else {

/*
* * * * * * * * *
 * TB MP - IPv6 headers do not have checksums, therefore these checksum
calculations are
 * not necessary. The IPv4 code that was here:
 *
 * iph->check = ip_nat_cheat_check(~iph->saddr, manip->ip,
 * iph->check);
 *
* * * * * * * * */

125

 ipv6h->daddr = manip->ip;
 }

/*
* * * * * * * * *
 * TB MP - This part manipulates the upper layer header information
using the new IP addresses.
 *
* * * * * * * * */

 /* Manipulate protcol part. */
 if (!ip6_find_nat_proto(proto)->manip_pkt(pskb,
 ipv6hdroff + IPV6_HDR_LEN,
 manip, maniptype)){
 return 0;
 }
 ipv6h = (void *)(*pskb)->data + ipv6hdroff;
 return 1;
}

static inline int exp_for_packet(struct ip6_conntrack_expect *exp,
 struct sk_buff *skb,
 unsigned int dataoff)
{
 struct ip6_conntrack_protocol *proto;
 int ret = 1;

 MUST_BE_READ_LOCKED(&ip6_conntrack_lock);
 proto = __ip6_ct_find_proto(skb->nh.ipv6h->nexthdr);
 if (proto->exp_matches_pkt)
 ret = proto->exp_matches_pkt(exp, skb, dataoff);

 return ret;
}

/* Do packet manipulations according to binding. */
unsigned int
ip6_do_bindings(struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo,
 struct ip6_nat_info *info,
 unsigned int hooknum,
 struct sk_buff **pskb,
 unsigned int dataoff)
{
 unsigned int i;
 struct ip6_nat_helper *helper;
 enum ip6_conntrack_dir dir = CTINFO2DIR(ctinfo);
 int proto = (*pskb)->nh.ipv6h->nexthdr;

 /* Need nat lock to protect against modification, but neither
 conntrack (referenced) and helper (deleted with
 synchronize_bh()) can vanish. */

 READ_LOCK(&ip6_nat_lock);

 for (i = 0; i < info->num_manips; i++) {

126

 if (info->manips[i].direction == dir
 && info->manips[i].hooknum == hooknum) {
 DEBUGP("Mangling %p: %s to %x:%x:%x:%x:%x:%x:%x:%x
%u\n",
 *pskb,
 info->manips[i].maniptype == IP6_NAT_MANIP_SRC
 ? "SRC" : "DST",
 NIP6(info->manips[i].manip.ip),
 htons(info->manips[i].manip.u.all));
 if (!manip_pkt(proto, pskb, 0,
 &info->manips[i].manip,
 info->manips[i].maniptype)) {

 READ_UNLOCK(&ip6_nat_lock);

 return NF_DROP;
 }
 }
 }
 helper = info->helper;
 READ_UNLOCK(&ip6_nat_lock);
 if (helper) {
 struct ip6_conntrack_expect *exp = NULL;
 struct list_head *cur_item;
 int ret = NF_ACCEPT;
 int helper_called = 0;
 DEBUGP("ip6_do_bindings: helper existing for (%p)\n", ct);
 /* Always defragged for helpers */
 IP6_NF_ASSERT(!((*pskb)->nh.ipv6h->frag_off
 & htons(IP6_MF|IP6_OFFSET)));
 /* Have to grab read lock before sibling_list traversal */
 READ_LOCK(&ip6_conntrack_lock);
 list_for_each(cur_item, &ct->sibling_list) {
 exp = list_entry(cur_item, struct
ip6_conntrack_expect,
 expected_list);
 /* if this expectation is already established, skip */
 if (exp->sibling){
 continue;
 }
 if (exp_for_packet(exp, *pskb, dataoff)) {
 /* FIXME: May be true multiple times in the
 * case of UDP!! */
 DEBUGP("calling nat helper (exp=%p) for
packet\n", exp);
 ret = helper->help(ct, exp, info, ctinfo,
 hooknum, pskb);
 if (ret != NF_ACCEPT) {
 READ_UNLOCK(&ip6_conntrack_lock);
 return ret;
 }
 helper_called = 1;
 }
 }
 /* Helper might want to manip the packet even when there is
no
 * matching expectation for this packet */

127

 if (!helper_called && helper->flags &
IP6_NAT_HELPER_F_ALWAYS) {
 DEBUGP("calling nat helper for packet without
expectation\n");
 ret = helper->help(ct, NULL, info, ctinfo,
 hooknum, pskb);
 if (ret != NF_ACCEPT) {
 READ_UNLOCK(&ip6_conntrack_lock);
 return ret;
 }
 }
 READ_UNLOCK(&ip6_conntrack_lock);

 /* Adjust sequence number only once per packet
 * (helper is called at all hooks) */

 if (proto == IPPROTO_TCP
 && (hooknum == NF_IP6_POST_ROUTING
 || hooknum == NF_IP6_LOCAL_IN)) {
 DEBUGP("ip6_nat_core: adjusting sequence number\n");
 /* future: put this in a l4-proto specific function,
 * and call this function here. */
 if (!ip6_nat_seq_adjust(pskb, ct, ctinfo)){
 ret = NF_DROP;
 }
 }
 return ret;
 } else {
 return NF_ACCEPT;
 }
 /* not reached */
}

int
icmpv6_reply_translation(struct sk_buff **pskb,
 struct ip6_conntrack *conntrack,
 unsigned int hooknum,
 int dir)
{
 struct {
 struct icmp6hdr icmp;
 struct ipv6hdr ip;
 } *inside;
 unsigned int i;
 struct ip6_nat_info *info = &conntrack->nat.info;
 int hdrlen;
 if (!skb_ip6_make_writable(pskb, IPV6_HDR_LEN + sizeof(*inside)))
 return 0;
 inside = (void *)(*pskb)->data + IPV6_HDR_LEN;

 /* We're actually going to mangle it beyond trivial checksum
 adjustment, so make sure the current checksum is correct. */

 if ((*pskb)->ip_summed != CHECKSUM_UNNECESSARY) {
 hdrlen = IPV6_HDR_LEN;

}

128

 /* Must be RELATED */
 IP6_NF_ASSERT((*pskb)->nfct
 - (struct ip6_conntrack *)(*pskb)->nfct->master
 == IP6_CT_RELATED
 || (*pskb)->nfct
 - (struct ip6_conntrack *)(*pskb)->nfct->master
 == IP6_CT_RELATED+IP6_CT_IS_REPLY);
 /* Redirects on non-null nats must be dropped, else they'll
 start talking to each other without our translation, and be
 confused... --RR */

 DEBUGP("icmpv6_reply_translation: translating error %p hook %u
dir %s\n",
 *pskb, hooknum, dir == IP6_CT_DIR_ORIGINAL ? "ORIG" :
"REPLY");
 /* Note: May not be from a NAT'd host, but probably safest to
 do translation always as if it came from the host itself
 (even though a "host unreachable" coming from the host
 itself is a bit weird).

 More explanation: some people use NAT for anonymizing.
 Also, CERT recommends dropping all packets from private IP
 addresses (although ICMP errors from internal links with
 such addresses are not too uncommon, as Alan Cox points
 out) */

 READ_LOCK(&ip6_nat_lock);
 for (i = 0; i < info->num_manips; i++) {
 DEBUGP("icmpv6_reply: manip %u dir %s hook %u\n",
 i, info->manips[i].direction == IP6_CT_DIR_ORIGINAL
?
 "ORIG" : "REPLY", info->manips[i].hooknum);

 if (info->manips[i].direction != dir){
 continue;
 }

 /* Mapping the inner packet is just like a normal
 packet, except it was never src/dst reversed, so
 where we would normally apply a dst manip, we apply
 a src, and vice versa. */

 if (info->manips[i].hooknum == hooknum) {
 DEBUGP("icmpv6_reply: inner %s ->
%x:%x:%x:%x:%x:%x:%x:%x %u\n",
 info->manips[i].maniptype == IP6_NAT_MANIP_SRC
 ? "DST" : "SRC",
 NIP6(info->manips[i].manip.ip),
 ntohs(info->manips[i].manip.u.udp.port));

 if (!manip_pkt(inside->ip.nexthdr, pskb,
 IPV6_HDR_LEN
 + sizeof(inside->icmp),
 &info->manips[i].manip,
 !info->manips[i].maniptype)){

129

goto unlock_fail;
 }
 /* Outer packet needs to have IP header NATe}d like
 it's a reply. */

 /* Use mapping to map outer packet: 0 give no
 per-proto mapping */
 DEBUGP("icmpv6_reply: outer %s ->
%x:%x:%x:%x:%x:%x:%x:%x \n",
 info->manips[i].maniptype == IP6_NAT_MANIP_SRC
 ? "SRC" : "DST",
 NIP6(info->manips[i].manip.ip));
 if (!manip_pkt(0, pskb, 0,
 &info->manips[i].manip,
 info->manips[i].maniptype)){

goto unlock_fail;
 }
 }
 }
 READ_UNLOCK(&ip6_nat_lock);

 hdrlen = IPV6_HDR_LEN;

 inside = (void *)(*pskb)->data + IPV6_HDR_LEN;

 struct in6_addr *saddrtmp, *daddrtmp;
 struct sk_buff *skb = *pskb;

 saddrtmp = &skb->nh.ipv6h->saddr;
 daddrtmp = &skb->nh.ipv6h->daddr;

 inside->icmp.icmp6_cksum = 0;

/*
* * * * * * * * *
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions
to calculate the
 * ICMPv6 header checksum. csum_partial determines the checksum for
just the ICMPv6 header
 * but does not flip the bits at the end. This is then folded into the
pseudo-header checksum
 * calculation done by csum_ipv6_magic, which then yields a proper
checksum for the entire
 * ICMPv6 header and pseudo-header combination.
 *
 *
* * * * * * * * */

inside->icmp.icmp6_cksum = csum_ipv6_magic(saddrtmp, daddrtmp, (*pskb)-
>len - sizeof(struct ipv6hdr), IPPROTO_ICMPV6,
 csum_partial((char *)&inside->icmp, (*pskb)->len - sizeof(struct
ipv6hdr), 0));

 return 1;

130

 unlock_fail:
 READ_UNLOCK(&ip6_nat_lock);
 return 0;
}

int __init ip6_nat_init(void)

{
 size_t i;
 /* Leave them the same for the moment. */
 ip6_nat_htable_size = ip6_conntrack_htable_size;

 /* One vmalloc for both hash tables */
 bysource = vmalloc(sizeof(struct list_head) *
ip6_nat_htable_size*2);
 if (!bysource) {
 return -ENOMEM;
 }
 byipsproto = bysource + ip6_nat_htable_size;

 /* Sew in builtin protocols. */
 WRITE_LOCK(&ip6_nat_lock);
 list_append(&ip6_protos, &ip6_nat_protocol_tcp);
 list_append(&ip6_protos, &ip6_nat_protocol_udp);
 list_append(&ip6_protos, &ip6_nat_protocol_icmp);
 WRITE_UNLOCK(&ip6_nat_lock);

 for (i = 0; i < ip6_nat_htable_size; i++) {
 INIT_LIST_HEAD(&bysource[i]);
 INIT_LIST_HEAD(&byipsproto[i]);
 }

 /* FIXME: Man, this is a hack. <SIGH> */
 IP6_NF_ASSERT(ip6_conntrack_destroyed == NULL);
 ip6_conntrack_destroyed = &ip6_nat_cleanup_conntrack;

 return 0;
}

/* Clear NAT section of all conntracks, in case we're loaded again. */
static int clean_nat(const struct ip6_conntrack *i, void *data)
{
 memset((void *)&i->nat, 0, sizeof(i->nat));
 return 0;
}

/* Not __exit: called from ip6_nat_standalone.c:init_or_cleanup() --RR
*/
void ip6_nat_cleanup(void)
{
 ip6_ct_selective_cleanup(&clean_nat, NULL);
 ip6_conntrack_destroyed = NULL;
 vfree(bysource);
}

131

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_CORE.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ip_nat_core.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _IP6_NAT_CORE_H
#define _IP6_NAT_CORE_H
#include <linux/list.h>
#include <linux/netfilter_ipv6/ip6_conntrack.h>

/* This header used to share core functionality between the standalone
 NAT module, and the compatibility layer's use of NAT for
masquerading. */
extern int ip6_nat_init(void);
extern void ip6_nat_cleanup(void);

extern unsigned int ip6_do_bindings(struct ip6_conntrack *ct,
 enum ip6_conntrack_info conntrackinfo,
 struct ip6_nat_info *info,
 unsigned int hooknum,
 struct sk_buff **pskb,
 unsigned int dataoff);

extern struct list_head ip6_protos;

extern int icmpv6_reply_translation(struct sk_buff **pskb,
 struct ip6_conntrack *conntrack,
 unsigned int hooknum,
 int dir);

extern void ip6_replace_in_hashes(struct ip6_conntrack *conntrack,
 struct ip6_nat_info *info);

132

extern void ip6_place_in_hashes(struct ip6_conntrack *conntrack,
 struct ip6_nat_info *info);

/* Built-in protocols. */
extern struct ip6_nat_protocol ip6_nat_protocol_tcp;
extern struct ip6_nat_protocol ip6_nat_protocol_udp;
extern struct ip6_nat_protocol ip6_nat_protocol_icmp;
#endif /* _IP6_NAT_CORE_H */

133

/NET/IPV6/NETFILTER/IP6_NAT_HELPER.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_helper.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * This file was ported, yet due to the scope of this thesis, no helper
 * files were used. This file was not tested.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* ip_nat_helper.c - generic support functions for NAT helpers
 *
 * (C) 2000-2002 Harald Welte <laforge@netfilter.org>
 * (C) 2003-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * 14 Jan 2002 Harald Welte <laforge@gnumonks.org>:
 * - add support for SACK adjustment
 * 14 Mar 2002 Harald Welte <laforge@gnumonks.org>:
 * - merge SACK support into newnat API
 * 16 Aug 2002 Brian J. Murrell <netfilter@interlinx.bc.ca>:
 * - make ip_nat_resize_packet more generic (TCP and UDP)
 * - add ip_nat_mangle_udp_packet
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/skbuff.h>

134

#include <linux/netfilter_ipv6.h>
#include <net/checksum.h>
#include <net/icmp.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <net/udp.h>

#define IPV6_HDR_LEN (sizeof(struct ipv6hdr))
#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock)
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock)

#include <linux/netfilter_ipv6/ip6_conntrack.h>
#include <linux/netfilter_ipv6/ip6_conntrack_helper.h>
#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>
#include <linux/netfilter_ipv6/ip6_nat_helper.h>
#include <linux/netfilter_ipv4/listhelp.h>

#if 0
#define DEBUGP printk
#define DUMP_OFFSET(x) printk("offset_before=%d, offset_after=%d,
correction_pos=%u\n", x->offset_before, x->offset_after, x-
>correction_pos);
#else
#define DEBUGP(format, args...)
#define DUMP_OFFSET(x)
#endif

DECLARE_LOCK(ip6_nat_seqofs_lock);

/* Setup TCP sequence correction given this change at this sequence */
static inline void
adjust_tcp_sequence(u32 seq,
 int sizediff,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo)
{
 int dir;
 struct ip6_nat_seq *this_way, *other_way;

 DEBUGP("ip6_nat_resize_packet: old_size = %u, new_size = %u\n",
 (*skb)->len, new_size);

 dir = CTINFO2DIR(ctinfo);

 this_way = &ct->nat.info.seq[dir];
 other_way = &ct->nat.info.seq[!dir];

 DEBUGP("ip6_nat_resize_packet: Seq_offset before: ");
 DUMP_OFFSET(this_way);

 LOCK_BH(&ip6_nat_seqofs_lock);

 /* SYN adjust. If it's uninitialized, of this is after last
 * correction, record it: we don't handle more than one
 * adjustment in the window, but do deal with common case of a

135

 * retransmit */
 if (this_way->offset_before == this_way->offset_after
 || before(this_way->correction_pos, seq)) {
 this_way->correction_pos = seq;
 this_way->offset_before = this_way->offset_after;
 this_way->offset_after += sizediff;
 }
 UNLOCK_BH(&ip6_nat_seqofs_lock);

 DEBUGP("ip6_nat_resize_packet: Seq_offset after: ");
 DUMP_OFFSET(this_way);
}
/* Frobs data inside this packet, which is linear. */
static void mangle_contents(struct sk_buff *skb,
 unsigned int dataoff,
 unsigned int match_offset,
 unsigned int match_len,
 const char *rep_buffer,
 unsigned int rep_len)
{
 unsigned char *data;

 BUG_ON(skb_is_nonlinear(skb));
 data = (unsigned char *)skb->nh.ipv6h + dataoff;

 /* move post-replacement */
 memmove(data + match_offset + rep_len,
 data + match_offset + match_len,
 skb->tail - (data + match_offset + match_len));

 /* insert data from buffer */
 memcpy(data + match_offset, rep_buffer, rep_len);

 /* update skb info */
 if (rep_len > match_len) {
 DEBUGP("ip6_nat_mangle_packet: Extending packet by "
 "%u from %u bytes\n", rep_len - match_len,
 skb->len);
 skb_put(skb, rep_len - match_len);
 } else {
 DEBUGP("ip6_nat_mangle_packet: Shrinking packet from "
 "%u from %u bytes\n", match_len - rep_len,
 skb->len);
 __skb_trim(skb, skb->len + rep_len - match_len);
 }

/* Unusual, but possible case. */
static int enlarge_skb(struct sk_buff **pskb, unsigned int extra)
{
 struct sk_buff *nskb;

 if ((*pskb)->len + extra > 65535)
 return 0;

136

 nskb = skb_copy_expand(*pskb, skb_headroom(*pskb), extra,
GFP_ATOMIC);
 if (!nskb)
 return 0;

 /* Transfer socket to new skb. */
 if ((*pskb)->sk)
 skb_set_owner_w(nskb, (*pskb)->sk);
#ifdef CONFIG_NETFILTER_DEBUG
 nskb->nf_debug = (*pskb)->nf_debug;
#endif
 kfree_skb(*pskb);
 *pskb = nskb;
 return 1;
}

/* Generic function for mangling variable-length address changes inside
 * NATed TCP connections (like the PORT XXX,XXX,XXX,XXX,XXX,XXX
 * command in FTP).
 *
 * Takes care about all the nasty sequence number changes,
checksumming,
 * skb enlargement, ...
 *
 * */

static __inline__ u16 tcp_v6_check(struct tcphdr *th, int len,
 struct in6_addr *saddr,
 struct in6_addr *daddr,
 unsigned long base)
{
 return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base);
}

int
ip6_nat_mangle_tcp_packet(struct sk_buff **pskb,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo,
 unsigned int match_offset,
 unsigned int match_len,
 const char *rep_buffer,
 unsigned int rep_len)
{
 struct ipv6hdr *ipv6h;
 struct tcphdr *tcph;

 int datalen;

 if (!skb_ip6_make_writable(pskb, (*pskb)->len))
 return 0;

 if (rep_len > match_len
 && rep_len - match_len > skb_tailroom(*pskb)
 && !enlarge_skb(pskb, rep_len - match_len))
 return 0;

 SKB_LINEAR_ASSERT(*pskb);

137

 ipv6h = (*pskb)->nh.ipv6h;
 tcph = (void *)ipv6h + IPV6_HDR_LEN;

 mangle_contents(*pskb, IPV6_HDR_LEN + tcph->doff*4,
 match_offset, match_len, rep_buffer, rep_len);

 datalen = (*pskb)->len - IPV6_HDR_LEN;

 tcph->check = 0;
 tcph->check = tcp_v6_check(tcph, datalen, &ipv6h->saddr, &ipv6h-
>daddr,
 csum_partial((char *)tcph, datalen, 0));

 adjust_tcp_sequence(ntohl(tcph->seq),
 (int)rep_len - (int)match_len,
 ct, ctinfo);
 return 1;
}

/* Generic function for mangling variable-length address changes inside
 * NATed UDP connections (like the CONNECT DATA XXXXX MESG XXXXX INDEX
XXXXX
 * command in the Amanda protocol)
 *
 * Takes care about all the nasty sequence number changes,
checksumming,
 * skb enlargement, ...
 *
 * XXX - This function could be merged with ip_nat_mangle_tcp_packet
which
 * should be fairly easy to do.
 */
int
ip6_nat_mangle_udp_packet(struct sk_buff **pskb,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo,
 unsigned int match_offset,
 unsigned int match_len,
 const char *rep_buffer,
 unsigned int rep_len)
{
 struct ipv6hdr *ipv6h;
 struct udphdr *udph;

 /* UDP helpers might accidentally mangle the wrong packet */
 ipv6h = (*pskb)->nh.ipv6h;
 if ((*pskb)->len < IPV6_HDR_LEN + sizeof(*udph) +
 match_offset + match_len)
 return 0;

 if (!skb_ip6_make_writable(pskb, (*pskb)->len))
 return 0;

 if (rep_len > match_len
 && rep_len - match_len > skb_tailroom(*pskb)
 && !enlarge_skb(pskb, rep_len - match_len))

138

 return 0;

 ipv6h = (*pskb)->nh.ipv6h;
 udph = (void *)ipv6h + IPV6_HDR_LEN;
 mangle_contents(*pskb, IPV6_HDR_LEN + sizeof(*udph),
 match_offset, match_len, rep_buffer, rep_len);

 /* update the length of the UDP packet */
 udph->len = htons((*pskb)->len - IPV6_HDR_LEN);

 /* fix udp checksum if udp checksum was previously calculated */
 if (udph->check) {
 int datalen = (*pskb)->len - IPV6_HDR_LEN;
 udph->check = 0;
 udph->check = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
 datalen, IPPROTO_UDP,
 csum_partial((char *)udph,
 datalen, 0));
 }

 return 1;
}

/* Adjust one found SACK option including checksum correction */
static void
sack_adjust(struct sk_buff *skb,
 struct tcphdr *tcph,
 unsigned int sackoff,
 unsigned int sackend,
 struct ip6_nat_seq *natseq)
{
 while (sackoff < sackend) {
 struct tcp_sack_block *sack;
 u_int32_t new_start_seq, new_end_seq;

 sack = (void *)skb->data + sackoff;
 if (after(ntohl(sack->start_seq) - natseq->offset_before,
 natseq->correction_pos))
 new_start_seq = ntohl(sack->start_seq)
 - natseq->offset_after;
 else
 new_start_seq = ntohl(sack->start_seq)
 - natseq->offset_before;
 new_start_seq = htonl(new_start_seq);

 if (after(ntohl(sack->end_seq) - natseq->offset_before,
 natseq->correction_pos))
 new_end_seq = ntohl(sack->end_seq)
 - natseq->offset_after;
 else
 new_end_seq = ntohl(sack->end_seq)
 - natseq->offset_before;
 new_end_seq = htonl(new_end_seq);

 DEBUGP("sack_adjust: start_seq: %d->%d, end_seq: %d->%d\n",
 ntohl(sack->start_seq), new_start_seq,
 ntohl(sack->end_seq), new_end_seq);

139

 tcph->check =
 ip6_int_nat_cheat_check(~sack->start_seq,
new_start_seq,
 ip6_int_nat_cheat_check(~sack-
>end_seq,
 new_end_seq,
 tcph->check));
 sack->start_seq = new_start_seq;
 sack->end_seq = new_end_seq;
 sackoff += sizeof(*sack);
 }
}

/* TCP SACK sequence number adjustment */
static inline unsigned int
ip6_nat_sack_adjust(struct sk_buff **pskb,
 struct tcphdr *tcph,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo)
{
 unsigned int dir, optoff, optend;

 optoff = IPV6_HDR_LEN + sizeof(struct tcphdr);
 optend = IPV6_HDR_LEN + tcph->doff*4;

 if (!skb_ip6_make_writable(pskb, optend))
 return 0;

 dir = CTINFO2DIR(ctinfo);

 while (optoff < optend) {
 /* Usually: option, length. */
 unsigned char *op = (*pskb)->data + optoff;

 switch (op[0]) {
 case TCPOPT_EOL:
 return 1;
 case TCPOPT_NOP:
 optoff++;
 continue;
 default:
 /* no partial options */
 if (optoff + 1 == optend
 || optoff + op[1] > optend
 || op[1] < 2)
 return 0;
 if (op[0] == TCPOPT_SACK
 && op[1] >= 2+TCPOLEN_SACK_PERBLOCK
 && ((op[1] - 2) % TCPOLEN_SACK_PERBLOCK) == 0)
 sack_adjust(*pskb, tcph, optoff+2,
 optoff+op[1],
 &ct->nat.info.seq[!dir]);
 optoff += op[1];
 }
 }
 return 1;

140

}

/* TCP sequence number adjustment. Returns true or false. */
int
ip6_nat_seq_adjust(struct sk_buff **pskb,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo)
{
 struct tcphdr *tcph;
 int dir, newseq, newack;
 struct ip6_nat_seq *this_way, *other_way;

 dir = CTINFO2DIR(ctinfo);

 this_way = &ct->nat.info.seq[dir];
 other_way = &ct->nat.info.seq[!dir];

 /* No adjustments to make? Very common case. */
 if (!this_way->offset_before && !this_way->offset_after
 && !other_way->offset_before && !other_way->offset_after)
 return 1;

 if (!skb_ip6_make_writable(pskb, IPV6_HDR_LEN+sizeof(*tcph)))
 return 0;

 tcph = (void *)(*pskb)->data + IPV6_HDR_LEN;
 if (after(ntohl(tcph->seq), this_way->correction_pos))
 newseq = ntohl(tcph->seq) + this_way->offset_after;
 else
 newseq = ntohl(tcph->seq) + this_way->offset_before;
 newseq = htonl(newseq);

 if (after(ntohl(tcph->ack_seq) - other_way->offset_before,
 other_way->correction_pos))
 newack = ntohl(tcph->ack_seq) - other_way->offset_after;
 else
 newack = ntohl(tcph->ack_seq) - other_way->offset_before;
 newack = htonl(newack);

 tcph->check = ip6_int_nat_cheat_check(~tcph->seq, newseq,
 ip6_int_nat_cheat_check(~tcph->ack_seq,
 newack,
 tcph->check));

 DEBUGP("Adjusting sequence number from %u->%u, ack from %u-
>%u\n",
 ntohl(tcph->seq), ntohl(newseq), ntohl(tcph->ack_seq),
 ntohl(newack));

 tcph->seq = newseq;
 tcph->ack_seq = newack;

 return ip6_nat_sack_adjust(pskb, tcph, ct, ctinfo);
}

static inline int
helper_cmp(const struct ip6_nat_helper *helper,

141

 const struct ip6_conntrack_tuple *tuple)
{
 return ip6_ct_tuple_mask_cmp(tuple, &helper->tuple, &helper-
>mask);
}

int ip6_nat_helper_register(struct ip6_nat_helper *me)
{
 int ret = 0;

 WRITE_LOCK(&ip6_nat_lock);
 if (LIST_FIND(&ip6_helpers, helper_cmp, struct ip6_nat_helper
*,&me->tuple))
 ret = -EBUSY;
 else
 list_prepend(&ip6_helpers, me);
 WRITE_UNLOCK(&ip6_nat_lock);

 return ret;
}

static int
kill_helper(const struct ip6_conntrack *i, void *helper)
{
 int ret;

 READ_LOCK(&ip6_nat_lock);
 ret = (i->nat.info.helper == helper);
 READ_UNLOCK(&ip6_nat_lock);

 return ret;
}

void ip6_nat_helper_unregister(struct ip6_nat_helper *me)
{
 WRITE_LOCK(&ip6_nat_lock);
 /* Autoloading conntrack helper might have failed */
 if (LIST_FIND(&ip6_helpers, helper_cmp, struct ip6_nat_helper
*,&me->tuple)) {
 LIST_DELETE(&ip6_helpers, me);
 }
 WRITE_UNLOCK(&ip6_nat_lock);

 /* Someone could be still looking at the helper in a bh. */
 synchronize_net();

 /* Find anything using it, and umm, kill them. We can't turn
 them into normal connections: if we've adjusted SYNs, then
 they'll ackstorm. So we just drop it. We used to just
 bump module count when a connection existed, but that
 forces admins to gen fake RSTs or bounce box, either of
 which is just a long-winded way of making things
 worse. --RR */
 ip6_ct_selective_cleanup(kill_helper, me);
}

142

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_HELPER.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ip_nat_helper.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * This file was ported, yet due to the scope of the thesis, no helper
 * files were used. This file was not tested.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _IP6_NAT_HELPER_H
#define _IP6_NAT_HELPER_H
/* NAT protocol helper routines. */

#include <linux/netfilter_ipv6/ip6_conntrack.h>
#include <linux/module.h>

struct sk_buff;

/* Flags */
/* NAT helper must be called on every packet (for TCP) */
#define IP6_NAT_HELPER_F_ALWAYS 0x01

struct ip6_nat_helper
{
 struct list_head list; /* Internal use */

 const char *name; /* name of the module */
 unsigned char flags; /* Flags (see above) */
 struct module *me; /* pointer to self */

 /* Mask of things we will help: vs. tuple from server */
 struct ip6_conntrack_tuple tuple;
 struct ip6_conntrack_tuple mask;

143

 /* Helper function: returns verdict */
 unsigned int (*help)(struct ip6_conntrack *ct,
 struct ip6_conntrack_expect *exp,
 struct ip6_nat_info *info,
 enum ip6_conntrack_info ctinfo,
 unsigned int hooknum,
 struct sk_buff **pskb);

 /* Returns verdict and sets up NAT for this connection */
 unsigned int (*expect)(struct sk_buff **pskb,
 unsigned int hooknum,
 struct ip6_conntrack *ct,
 struct ip6_nat_info *info);
};

extern struct list_head ip6_helpers;

extern int ip6_nat_helper_register(struct ip6_nat_helper *me);
extern void ip6_nat_helper_unregister(struct ip6_nat_helper *me);

/* These return true or false. */
extern int ip6_nat_mangle_tcp_packet(struct sk_buff **skb,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo,
 unsigned int match_offset,
 unsigned int match_len,
 const char *rep_buffer,
 unsigned int rep_len);
extern int ip6_nat_mangle_udp_packet(struct sk_buff **skb,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo,
 unsigned int match_offset,
 unsigned int match_len,
 const char *rep_buffer,
 unsigned int rep_len);
extern int ip6_nat_seq_adjust(struct sk_buff **pskb,
 struct ip6_conntrack *ct,
 enum ip6_conntrack_info ctinfo);
#endif

144

/NET/IPV6/NETFILTER/IP6_NAT_PROTO_ICMP.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_proto_icmp.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/types.h>
#include <linux/init.h>
#include <linux/netfilter.h>
#include <linux/ipv6.h>
#include <linux/icmpv6.h>
#include <linux/if.h>
#include <net/checksum.h>

#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>

static int
icmpv6_in_range(const struct ip6_conntrack_tuple *tuple,
 enum ip6_nat_manip_type maniptype,
 const union ip6_conntrack_manip_proto *min,
 const union ip6_conntrack_manip_proto *max)
{

145

 return (tuple->src.u.icmpv6.id >= min->icmpv6.id
 && tuple->src.u.icmpv6.id <= max->icmpv6.id);
}

static int
icmpv6_unique_tuple(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_range *range,
 enum ip6_nat_manip_type maniptype,
 const struct ip6_conntrack *conntrack)
{
 static u_int16_t id;
 unsigned int range_size
 = (unsigned int)range->max.icmpv6.id - range->min.icmpv6.id
+ 1;
 unsigned int i;

 /* If no range specified... */
 if (!(range->flags & IP6_NAT_RANGE_PROTO_SPECIFIED))
 range_size = 0xFFFF;

 for (i = 0; i < range_size; i++, id++) {
 tuple->src.u.icmpv6.id = range->min.icmpv6.id + (id %
range_size);
 if (!ip6_nat_used_tuple(tuple, conntrack))
 return 1;
 }
 return 0;
}

static int
icmpv6_manip_pkt(struct sk_buff **pskb,
 unsigned int hdroff,
 const struct ip6_conntrack_manip *manip,
 enum ip6_nat_manip_type maniptype)
{

struct sk_buff *skb = *pskb;
 struct icmp6hdr *hdr;

 if (!skb_ip6_make_writable(pskb, hdroff + sizeof(hdr))){

 return 0;
 }
 hdr = (void *)(*pskb)->data + hdroff;

 struct in6_addr *saddr, *daddr;

 saddr = &skb->nh.ipv6h->saddr;
 daddr = &skb->nh.ipv6h->daddr;

 hdr->icmp6_cksum = 0;

/*
* * * * * * * * *
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions
to calculate the

146

 * ICMPv6 header checksum. csum_partial determines the checksum for
just the ICMPv6 header
 * but does not flip the bits at the end. This is then folded into the
pseudo-header checksum
 * calculation done by csum_ipv6_magic, which then yields a proper
checksum for the entire
 * ICMPv6 header and pseudo-header combination.
 *
 *
* * * * * * * * */
 hdr->icmp6_cksum = csum_ipv6_magic(saddr,
 daddr, (*pskb)->len - sizeof(struct
ipv6hdr),
 IPPROTO_ICMPV6,
csum_partial((char *)hdr, (*pskb)->len - sizeof(struct ipv6hdr), 0));

 hdr->icmp6_dataun.u_echo.identifier = manip->u.icmpv6.id;

 return 1;
}

static unsigned int
icmpv6_print(char *buffer,
 const struct ip6_conntrack_tuple *match,
 const struct ip6_conntrack_tuple *mask)
{
 unsigned int len = 0;

 if (mask->src.u.icmpv6.id)
 len += sprintf(buffer + len, "id=%u ",
 ntohs(match->src.u.icmpv6.id));

 if (mask->dst.u.icmpv6.type)
 len += sprintf(buffer + len, "type=%u ",
 ntohs(match->dst.u.icmpv6.type));

 if (mask->dst.u.icmpv6.code)
 len += sprintf(buffer + len, "code=%u ",
 ntohs(match->dst.u.icmpv6.code));

 return len;
}

static unsigned int
icmpv6_print_range(char *buffer, const struct ip6_nat_range *range)
{
 if (range->min.icmpv6.id != 0 || range->max.icmpv6.id != 0xFFFF)
 return sprintf(buffer, "id %u-%u ",
 ntohs(range->min.icmpv6.id),
 ntohs(range->max.icmpv6.id));
 else return 0;
}

struct ip6_nat_protocol ip6_nat_protocol_icmp
= { { NULL, NULL }, "ICMP", IPPROTO_ICMPV6,
 icmpv6_manip_pkt,

147

 icmpv6_in_range,
 icmpv6_unique_tuple,
 icmpv6_print,
 icmpv6_print_range,
};

148

/NET/IPV6/NETFILTER/IP6_NAT_PROTO_TCP.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_proto_tcp.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/types.h>
#include <linux/init.h>
#include <linux/netfilter.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/if.h>
#include <net/checksum.h>
#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>

static int
tcp_in_range(const struct ip6_conntrack_tuple *tuple,
 enum ip6_nat_manip_type maniptype,
 const union ip6_conntrack_manip_proto *min,
 const union ip6_conntrack_manip_proto *max)
{
 u_int16_t port;

149

 if (maniptype == IP6_NAT_MANIP_SRC)
 port = tuple->src.u.tcp.port;
 else
 port = tuple->dst.u.tcp.port;

 return ntohs(port) >= ntohs(min->tcp.port)
 && ntohs(port) <= ntohs(max->tcp.port);
}

static int
tcp_unique_tuple(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_range *range,
 enum ip6_nat_manip_type maniptype,
 const struct ip6_conntrack *conntrack)
{
 static u_int16_t port, *portptr;
 unsigned int range_size, min, i;

 if (maniptype == IP6_NAT_MANIP_SRC)
 portptr = &tuple->src.u.tcp.port;
 else
 portptr = &tuple->dst.u.tcp.port;

 /* If no range specified... */
 if (!(range->flags & IP6_NAT_RANGE_PROTO_SPECIFIED)) {
 /* If it's dst rewrite, can't change port */
 if (maniptype == IP6_NAT_MANIP_DST)
 return 0;

 /* Map privileged onto privileged. */
 if (ntohs(*portptr) < 1024) {
 /* Loose convention: >> 512 is credential passing */
 if (ntohs(*portptr)<512) {
 min = 1;
 range_size = 511 - min + 1;
 } else {
 min = 600;
 range_size = 1023 - min + 1;
 }
 } else {
 min = 1024;
 range_size = 65535 - 1024 + 1;
 }
 } else {
 min = ntohs(range->min.tcp.port);
 range_size = ntohs(range->max.tcp.port) - min + 1;
 }

 for (i = 0; i < range_size; i++, port++) {
 *portptr = htons(min + port % range_size);
 if (!ip6_nat_used_tuple(tuple, conntrack)) {
 return 1;
 }
 }
 return 0;
}

150

static int
tcp_manip_pkt(struct sk_buff **pskb,
 unsigned int hdroff,
 const struct ip6_conntrack_manip *manip,
 enum ip6_nat_manip_type maniptype)
{
 struct tcphdr *hdr;
 struct in6_addr oldip;
 u_int16_t *portptr, oldport;
 int hdrsize = 8; /* TCP connection tracking guarantees this much
*/

 /* this could be a inner header returned in icmp packet; in such
 cases we cannot update the checksum field since it is outside
of
 the 8 bytes of transport layer headers we are guaranteed */
 if ((*pskb)->len >= hdroff + sizeof(struct tcphdr))
 hdrsize = sizeof(struct tcphdr);

 if (!skb_ip6_make_writable(pskb, hdroff + hdrsize))
 return 0;

 hdr = (void *)(*pskb)->data + hdroff;

 if (maniptype == IP6_NAT_MANIP_SRC) {
 /* Get rid of src ip and src pt */
 oldip = (*pskb)->nh.ipv6h->saddr;

 portptr = &hdr->source;
 } else {
 /* Get rid of dst ip and dst pt */
 oldip = (*pskb)->nh.ipv6h->daddr;
 portptr = &hdr->dest;
 }

 oldport = *portptr;
 *portptr = manip->u.tcp.port;

 if (hdrsize < sizeof(*hdr))
 return 1;

 hdr->check = 0;

/*
* * * * * * * * *
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions
to calculate the
 * TCP header checksum. csum_partial determines the checksum for just
the TCP header
 * but does not flip the bits at the end. This is then folded into the
pseudo-header checksum
 * calculation done by csum_ipv6_magic, which then yields a proper
checksum for the entire
 * TCP header and pseudo-header combination.
 *

151

 *
* * * * * * * * */

 hdr->check = csum_ipv6_magic(&(*pskb)->nh.ipv6h->saddr,
 &(*pskb)->nh.ipv6h->daddr,
 (*pskb)->len - sizeof(struct ipv6hdr),
 IPPROTO_TCP,
 csum_partial((char *)hdr, (*pskb)->len -
sizeof(struct ipv6hdr), 0));

return 1;
}

static unsigned int
tcp_print(char *buffer,
 const struct ip6_conntrack_tuple *match,
 const struct ip6_conntrack_tuple *mask)
{
 unsigned int len = 0;

 if (mask->src.u.tcp.port)
 len += sprintf(buffer + len, "srcpt=%u ",
 ntohs(match->src.u.tcp.port));

 if (mask->dst.u.tcp.port)
 len += sprintf(buffer + len, "dstpt=%u ",
 ntohs(match->dst.u.tcp.port));

 return len;
}

static unsigned int
tcp_print_range(char *buffer, const struct ip6_nat_range *range)
{
 if (range->min.tcp.port != 0 || range->max.tcp.port != 0xFFFF) {
 if (range->min.tcp.port == range->max.tcp.port)
 return sprintf(buffer, "port %u ",
 ntohs(range->min.tcp.port));
 else
 return sprintf(buffer, "ports %u-%u ",
 ntohs(range->min.tcp.port),
 ntohs(range->max.tcp.port));
 }
 else return 0;
}

struct ip6_nat_protocol ip6_nat_protocol_tcp
= { { NULL, NULL }, "TCP", IPPROTO_TCP,
 tcp_manip_pkt,
 tcp_in_range,
 tcp_unique_tuple,
 tcp_print,
 tcp_print_range
};

152

/NET/IPV6/NETFILTER/IP6_NAT_PROTO_UDP.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_proto_udp.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/types.h>
#include <linux/init.h>
#include <linux/netfilter.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/if.h>
#include <net/checksum.h>

#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>

static int
udp_in_range(const struct ip6_conntrack_tuple *tuple,
 enum ip6_nat_manip_type maniptype,
 const union ip6_conntrack_manip_proto *min,
 const union ip6_conntrack_manip_proto *max)
{

153

 u_int16_t port;
 if (maniptype == IP6_NAT_MANIP_SRC)
 port = tuple->src.u.udp.port;
 else
 port = tuple->dst.u.udp.port;

 return ntohs(port) >= ntohs(min->udp.port)
 && ntohs(port) <= ntohs(max->udp.port);
}

static int
udp_unique_tuple(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_range *range,
 enum ip6_nat_manip_type maniptype,
 const struct ip6_conntrack *conntrack)
{

 static u_int16_t port, *portptr;
 unsigned int range_size, min, i;

 if (maniptype == IP6_NAT_MANIP_SRC)
 portptr = &tuple->src.u.udp.port;
 else
 portptr = &tuple->dst.u.udp.port;

 /* If no range specified... */
 if (!(range->flags & IP6_NAT_RANGE_PROTO_SPECIFIED)) {
 /* If it's dst rewrite, can't change port */
 if (maniptype == IP6_NAT_MANIP_DST)
 return 0;

 if (ntohs(*portptr) < 1024) {
 /* Loose convention: >> 512 is credential passing */
 if (ntohs(*portptr)<512) {
 min = 1;
 range_size = 511 - min + 1;
 } else {
 min = 600;
 range_size = 1023 - min + 1;
 }
 } else {
 min = 1024;
 range_size = 65535 - 1024 + 1;
 }
 } else {
 min = ntohs(range->min.udp.port);
 range_size = ntohs(range->max.udp.port) - min + 1;
 }

 for (i = 0; i < range_size; i++, port++) {
 *portptr = htons(min + port % range_size);
 if (!ip6_nat_used_tuple(tuple, conntrack))
 return 1;
 }
 return 0;
}

154

static int
udp_manip_pkt(struct sk_buff **pskb,
 unsigned int hdroff,
 const struct ip6_conntrack_manip *manip,
 enum ip6_nat_manip_type maniptype)
{

 struct udphdr *hdr;
 struct in6_addr oldip;
 u_int16_t *portptr;

 if (!skb_ip6_make_writable(pskb, hdroff + sizeof(hdr)))
 return 0;

 hdr = (void *)(*pskb)->data + hdroff;
 if (maniptype == IP6_NAT_MANIP_SRC) {
 /* Get rid of src ip and src pt */
 oldip = (*pskb)->nh.ipv6h->saddr;
 portptr = &hdr->source;
 } else {
 /* Get rid of dst ip and dst pt */
 oldip = (*pskb)->nh.ipv6h->daddr;
 portptr = &hdr->dest;
 }
 if (hdr->check){ /* 0 is a special case meaning no checksum */

 hdr->check = 0;

/*
* * * * * * * * *
 * TB MP - Here we use the csum_ipv6_magic and csum_partial functions
to calculate the
 * UDP header checksum. csum_partial determines the checksum for just
the UDP header
 * but does not flip the bits at the end. This is then folded into the
pseudo-header checksum
 * calculation done by csum_ipv6_magic, which then yields a proper
checksum for the entire
 * UDP header and pseudo-header combination.
 *
 *
* * * * * * * * */

 hdr->check = csum_ipv6_magic(&(*pskb)->nh.ipv6h->saddr,
 &(*pskb)->nh.ipv6h->daddr,
 (*pskb)->len - sizeof(struct ipv6hdr),
 IPPROTO_UDP,
 csum_partial((char *)hdr, (*pskb)->len -
sizeof(struct ipv6hdr), 0));

 }

 *portptr = manip->u.udp.port;
 return 1;
}

155

static unsigned int
udp_print(char *buffer,
 const struct ip6_conntrack_tuple *match,
 const struct ip6_conntrack_tuple *mask)
{

 unsigned int len = 0;

 if (mask->src.u.udp.port)
 len += sprintf(buffer + len, "srcpt=%u ",
 ntohs(match->src.u.udp.port));

 if (mask->dst.u.udp.port)
 len += sprintf(buffer + len, "dstpt=%u ",
 ntohs(match->dst.u.udp.port));

 return len;
}

static unsigned int
udp_print_range(char *buffer, const struct ip6_nat_range *range)
{

 if (range->min.udp.port != 0 || range->max.udp.port != 0xFFFF) {
 if (range->min.udp.port == range->max.udp.port)
 return sprintf(buffer, "port %u ",
 ntohs(range->min.udp.port));
 else
 return sprintf(buffer, "ports %u-%u ",
 ntohs(range->min.udp.port),
 ntohs(range->max.udp.port));
 }
 else return 0;
}

struct ip6_nat_protocol ip6_nat_protocol_udp
= { { NULL, NULL }, "UDP", IPPROTO_UDP,
 udp_manip_pkt,
 udp_in_range,
 udp_unique_tuple,
 udp_print,
 udp_print_range
};

156

/NET/IPV6/NETFILTER/IP6_NAT_PROTO_UNKNOWN.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_proto_unknown.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* The "unknown" protocol. This is what is used for protocols we
 * don't understand. It's returned by ip_ct_find_proto().
 */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/types.h>
#include <linux/init.h>
#include <linux/netfilter.h>
#include <linux/if.h>

#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>

static int unknown_in_range(const struct ip6_conntrack_tuple *tuple,
 enum ip6_nat_manip_type manip_type,
 const union ip6_conntrack_manip_proto *min,
 const union ip6_conntrack_manip_proto *max)
{
 return 1;

157

}

static int unknown_unique_tuple(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_range *range,
 enum ip6_nat_manip_type maniptype,
 const struct ip6_conntrack *conntrack)
{
 /* Sorry: we can't help you; if it's not unique, we can't frob
 anything. */
 return 0;
}

static int
unknown_manip_pkt(struct sk_buff **pskb,
 unsigned int hdroff,
 const struct ip6_conntrack_manip *manip,
 enum ip6_nat_manip_type maniptype)
{
 return 1;
}

static unsigned int
unknown_print(char *buffer,
 const struct ip6_conntrack_tuple *match,
 const struct ip6_conntrack_tuple *mask)
{
 return 0;
}

static unsigned int
unknown_print_range(char *buffer, const struct ip6_nat_range *range)
{
 return 0;
}

struct ip6_nat_protocol ip6_unknown_nat_protocol = {
 { NULL, NULL }, "unknown", 0,
 unknown_manip_pkt,
 unknown_in_range,
 unknown_unique_tuple,
 unknown_print,
 unknown_print_range
};

158

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_PROTOCOL.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ip_nat_protocol.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* Header for use in defining a given protocol. */
#ifndef _IP6_NAT_PROTOCOL_H
#define _IP6_NAT_PROTOCOL_H
#include <linux/init.h>
#include <linux/list.h>

struct ipv6hdr;
struct ip6_nat_range;

struct ip6_nat_protocol
{
 struct list_head list;

 /* Protocol name */
 const char *name;

 /* Protocol number. */
 unsigned int protonum;

 /* Do a packet translation according to the ip_nat_proto_manip
 * and manip type. Return true if succeeded. */
 int (*manip_pkt)(struct sk_buff **pskb,
 unsigned int hdroff,
 const struct ip6_conntrack_manip *manip,
 enum ip6_nat_manip_type maniptype);

159

 /* Is the manipable part of the tuple between min and max incl?
*/
 int (*in_range)(const struct ip6_conntrack_tuple *tuple,
 enum ip6_nat_manip_type maniptype,
 const union ip6_conntrack_manip_proto *min,
 const union ip6_conntrack_manip_proto *max);

 /* Alter the per-proto part of the tuple (depending on
 maniptype), to give a unique tuple in the given range if
 possible; return false if not. Per-protocol part of tuple
 is initialized to the incoming packet. */
 int (*unique_tuple)(struct ip6_conntrack_tuple *tuple,
 const struct ip6_nat_range *range,
 enum ip6_nat_manip_type maniptype,
 const struct ip6_conntrack *conntrack);

 unsigned int (*print)(char *buffer,
 const struct ip6_conntrack_tuple *match,
 const struct ip6_conntrack_tuple *mask);

 unsigned int (*print_range)(char *buffer,
 const struct ip6_nat_range *range);
};

/* Protocol registration. */
extern int ip6_nat_protocol_register(struct ip6_nat_protocol *proto);
extern void ip6_nat_protocol_unregister(struct ip6_nat_protocol
*proto);

extern int init_protocols(void) __init;
extern void cleanup_protocols(void);
extern struct ip6_nat_protocol *ip6_find_nat_proto(u_int16_t protonum);

#endif /*_IP6_NAT_PROTO_H*/

160

/NET/IPV6/NETFILTER/IP6_NAT_RULE.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_rule.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/* Everything about the rules for NAT. */
#include <linux/types.h>
#include <linux/ipv6.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv6.h>
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <net/checksum.h>
#include <linux/bitops.h>

#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock)
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock)

#if 0
#define DEBUGP printk
#else
#define DEBUGP(format, args...)

161

#endif

#include <linux/netfilter_ipv6/ip6_tables.h>
#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv4/listhelp.h>

#define NAT_VALID_HOOKS ((1<<NF_IP6_PRE_ROUTING) |
(1<<NF_IP6_POST_ROUTING) | (1<<NF_IP6_LOCAL_OUT))

/* Standard entry. */
struct ip6t_standard
{
 struct ip6t_entry entry;
 struct ip6t_standard_target target;
};

struct ip6t_error_target
{
 struct ip6t_entry_target target;
 char errorname[IP6T_FUNCTION_MAXNAMELEN];
};

struct ip6t_error
{
 struct ip6t_entry entry;
 struct ip6t_error_target target;
};

static struct
{
 struct ip6t_replace repl;
 struct ip6t_standard entries[3];
 struct ip6t_error term;
} nat_initial_table __initdata
= { { "nat", NAT_VALID_HOOKS, 4,
 sizeof(struct ip6t_standard) * 3 + sizeof(struct ip6t_error),
 { [NF_IP6_PRE_ROUTING] = 0,
 [NF_IP6_POST_ROUTING] = sizeof(struct ip6t_standard),
 [NF_IP6_LOCAL_OUT] = sizeof(struct ip6t_standard) * 2 },
 { [NF_IP6_PRE_ROUTING] = 0,
 [NF_IP6_POST_ROUTING] = sizeof(struct ip6t_standard),
 [NF_IP6_LOCAL_OUT] = sizeof(struct ip6t_standard) * 2 },
 0, NULL, { } },
 {
 /* PRE_ROUTING */
 { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 }
} }, "", "", { 0 }, { 0 }, 0, 0, 0 },
 0,
 sizeof(struct ip6t_entry),
 sizeof(struct ip6t_standard),
 0, { 0, 0 }, { } },
 { { { { IP6T_ALIGN(sizeof(struct ip6t_standard_target)), ""
} }, { } },
 -NF_ACCEPT - 1 } },
 /* POST_ROUTING */

162

 { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 }
} }, "", "", { 0 }, { 0 }, 0, 0, 0 },
 0,
 sizeof(struct ip6t_entry),
 sizeof(struct ip6t_standard),
 0, { 0, 0 }, { } },
 { { { { IP6T_ALIGN(sizeof(struct ip6t_standard_target)), ""
} }, { } },
 -NF_ACCEPT - 1 } },
 /* LOCAL_OUT */
 { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 }
} }, "", "", { 0 }, { 0 }, 0, 0, 0 },
 0,
 sizeof(struct ip6t_entry),
 sizeof(struct ip6t_standard),
 0, { 0, 0 }, { } },
 { { { { IP6T_ALIGN(sizeof(struct ip6t_standard_target)), ""
} }, { } },
 -NF_ACCEPT - 1 } }
 },
 /* ERROR */
 { { { { { { 0 } } }, { { { 0 } } }, { { { 0 } } }, { { { 0 } } },
"", "", { 0 }, { 0 }, 0, 0, 0 },
 0,
 sizeof(struct ip6t_entry),
 sizeof(struct ip6t_error),
 0, { 0, 0 }, { } },
 { { { { IP6T_ALIGN(sizeof(struct ip6t_error_target)),
IP6T_ERROR_TARGET } },
 { } },
 "ERROR"
 }
 }
};

static struct ip6t_table nat_table = {
 .name = "nat",
 .table = &nat_initial_table.repl,
 .valid_hooks = NAT_VALID_HOOKS,
 .lock = RW_LOCK_UNLOCKED,
 .me = THIS_MODULE,
};

/* Source NAT */
static unsigned int ip6t_snat_target(struct sk_buff **pskb,
 unsigned int hooknum,
 const struct net_device *in,
 const struct net_device *out,
 const void *targinfo,
 void *userinfo)
{

 struct ip6_conntrack *ct;
 enum ip6_conntrack_info ctinfo;

 IP6_NF_ASSERT(hooknum == NF_IP6_POST_ROUTING);

163

 ct = ip6_conntrack_get(*pskb, &ctinfo);

 /* Connection must be valid and new. */
 IP6_NF_ASSERT(ct && (ctinfo == IP6_CT_NEW || ctinfo ==
IP6_CT_RELATED));

 IP6_NF_ASSERT(out);

return ip6_nat_setup_info(ct, targinfo, hooknum);
}

static unsigned int ip6t_dnat_target(struct sk_buff **pskb,
 unsigned int hooknum,
 const struct net_device *in,
 const struct net_device *out,
 const void *targinfo,
 void *userinfo)
{
 struct ip6_conntrack *ct;
 enum ip6_conntrack_info ctinfo;

#ifdef CONFIG_IP6_NF_NAT_LOCAL
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING
 || hooknum == NF_IP6_LOCAL_OUT);
#else
 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING);
#endif

 ct = ip6_conntrack_get(*pskb, &ctinfo);

 /* Connection must be valid and new. */
 IP6_NF_ASSERT(ct && (ctinfo == IP6_CT_NEW || ctinfo ==
IP6_CT_RELATED));

 return ip6_nat_setup_info(ct, targinfo, hooknum);
}

static int ip6t_snat_checkentry(const char *tablename,
 const struct ip6t_entry *e,
 void *targinfo,
 unsigned int targinfosize,
 unsigned int hook_mask)
{
 struct ip6_nat_multi_range *mr = targinfo;

 /* Must be a valid range */
 if (targinfosize < sizeof(struct ip6_nat_multi_range)) {
 DEBUGP("SNAT: Target size %u too small\n", targinfosize);
 return 0;
 }

 if (targinfosize != IP6T_ALIGN((sizeof(struct
ip6_nat_multi_range)
 + (sizeof(struct ip6_nat_range)
 * (mr->rangesize - 1))))) {
 DEBUGP("SNAT: Target size %u wrong for %u ranges\n",
 targinfosize, mr->rangesize);

164

 return 0;
 }

 /* Only allow these for NAT. */
 if (strcmp(tablename, "nat") != 0) {
 DEBUGP("SNAT: wrong table %s\n", tablename);
 return 0;
 }

 if (hook_mask & ~(1 << NF_IP6_POST_ROUTING)) {
 DEBUGP("SNAT: hook mask 0x%x bad\n", hook_mask);
 return 0;
 }
 return 1;
}

static int ip6t_dnat_checkentry(const char *tablename,
 const struct ip6t_entry *e,
 void *targinfo,
 unsigned int targinfosize,
 unsigned int hook_mask)
{
 struct ip6_nat_multi_range *mr = targinfo;

 /* Must be a valid range */
 if (targinfosize < sizeof(struct ip6_nat_multi_range)) {
 DEBUGP("DNAT: Target size %u too small\n", targinfosize);
 return 0;
 }

 if (targinfosize != IP6T_ALIGN((sizeof(struct
ip6_nat_multi_range)
 + (sizeof(struct ip6_nat_range)
 * (mr->rangesize - 1))))) {
 DEBUGP("DNAT: Target size %u wrong for %u ranges\n",
 targinfosize, mr->rangesize);
 return 0;
 }

 /* Only allow these for NAT. */
 if (strcmp(tablename, "nat") != 0) {
 DEBUGP("DNAT: wrong table %s\n", tablename);
 return 0;
 }

 if (hook_mask & ~((1 << NF_IP6_PRE_ROUTING) | (1 <<
NF_IP6_LOCAL_OUT))) {
 DEBUGP("DNAT: hook mask 0x%x bad\n", hook_mask);
 return 0;
 }

#ifndef CONFIG_IP6_NF_NAT_LOCAL
 if (hook_mask & (1 << NF_IP6_LOCAL_OUT)) {
 DEBUGP("DNAT: CONFIG_IP6_NF_NAT_LOCAL not enabled\n");
 return 0;
 }
#endif

165

 return 1;
}

inline unsigned int
ip6_alloc_null_binding(struct ip6_conntrack *conntrack,
 struct ip6_nat_info *info,
 unsigned int hooknum)
{

 /* Force range to this IP; let proto decide mapping for
 per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
 Use reply in case it's already been mangled (eg local packet).
 */

 struct in6_addr ip
 = (HOOK2MANIP(hooknum) == IP6_NAT_MANIP_SRC
 ? conntrack->tuplehash[IP6_CT_DIR_REPLY].tuple.dst.ip
 : conntrack->tuplehash[IP6_CT_DIR_REPLY].tuple.src.ip);
 struct ip6_nat_multi_range mr
 = { 1, { { IP6_NAT_RANGE_MAP_IPS, ip, ip, { 0 }, { 0 } } }
};

 DEBUGP("Allocating NULL binding for %p (
%x:%x:%x:%x:%x:%x:%x:%x)\n", conntrack,
 NIP6(ip));

 return ip6_nat_setup_info(conntrack, &mr, hooknum);
}

int ip6_nat_rule_find(struct sk_buff **pskb,
 unsigned int hooknum,
 const struct net_device *in,
 const struct net_device *out,
 struct ip6_conntrack *ct,
 struct ip6_nat_info *info)
{
 int ret;

 ret = ip6t_do_table(pskb, hooknum, in, out, &nat_table, NULL);

 if (ret == NF_ACCEPT) {

 if (!(info->initialized & (1 << HOOK2MANIP(hooknum)))){

 /* NUL mapping */
 ret = ip6_alloc_null_binding(ct, info, hooknum);
 }
 }

 return ret;
}

static struct ip6t_target ip6t_snat_reg = {
 .name = "SNAT",
 .target = ip6t_snat_target,
 .checkentry = ip6t_snat_checkentry,

166

};

static struct ip6t_target ip6t_dnat_reg = {
 .name = "DNAT",
 .target = ip6t_dnat_target,
 .checkentry = ip6t_dnat_checkentry,
};

int __init ip6_nat_rule_init(void)
{
 int ret;

 ret = ip6t_register_table(&nat_table);
 if (ret != 0)
 return ret;
 ret = ip6t_register_target(&ip6t_snat_reg);
 if (ret != 0)
 goto unregister_table;

 ret = ip6t_register_target(&ip6t_dnat_reg);
 if (ret != 0)
 goto unregister_snat;

 return ret;

 unregister_snat:
 ip6t_unregister_target(&ip6t_snat_reg);
 unregister_table:
 ip6t_unregister_table(&nat_table);

 return ret;
}

void ip6_nat_rule_cleanup(void)
{
 ip6t_unregister_target(&ip6t_dnat_reg);
 ip6t_unregister_target(&ip6t_snat_reg);
 ip6t_unregister_table(&nat_table);
}

167

/INCLUDE/LINUX/NETFILTER_IPV6/IP6_NAT_RULE.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ip_nat_rule.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _IP6_NAT_RULE_H
#define _IP6_NAT_RULE_H
#include <linux/netfilter_ipv6/ip6_conntrack.h>
#include <linux/netfilter_ipv6/ip6_tables.h>
#include <linux/netfilter_ipv6/ip6_nat.h>

#ifdef __KERNEL__

extern int ip6_nat_rule_init(void) __init;
extern void ip6_nat_rule_cleanup(void);
extern int ip6_nat_rule_find(struct sk_buff **pskb,
 unsigned int hooknum,
 const struct net_device *in,
 const struct net_device *out,
 struct ip6_conntrack *ct,
 struct ip6_nat_info *info);

extern unsigned int
ip6_alloc_null_binding(struct ip6_conntrack *conntrack,
 struct ip6_nat_info *info,
 unsigned int hooknum);
#endif
#endif /* _IP6_NAT_RULE_H */

168

/NET/IPV6/NETFILTER/IP6_NAT_STANDALONE.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ip_nat_standalone.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* This file contains all the functions required for the standalone
 ip_nat module.

 These are not required by the compatibility layer.
*/

/* (C) 1999-2001 Paul `Rusty' Russell
 * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/*
 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
 * - new API and handling of conntrack/nat helpers
 * - now capable of multiple expectations for one master
 * */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/icmpv6.h>
#include <linux/ipv6.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv6.h>
#include <linux/module.h>

169

#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <net/checksum.h>
#include <linux/spinlock.h>

#define IPV6_HDR_LEN (sizeof(struct ipv6hdr))
#define IPV6_OPTHDR_LEN (sizeof(struct ipv6_opt_hdr))

#define ASSERT_READ_LOCK(x) MUST_BE_READ_LOCKED(&ip6_nat_lock)
#define ASSERT_WRITE_LOCK(x) MUST_BE_WRITE_LOCKED(&ip6_nat_lock)

#include <linux/netfilter_ipv6/ip6_nat.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv6/ip6_nat_protocol.h>
#include <linux/netfilter_ipv6/ip6_nat_core.h>
#include <linux/netfilter_ipv6/ip6_nat_helper.h>
#include <linux/netfilter_ipv6/ip6_tables.h>
#include <linux/netfilter_ipv6/ip6_conntrack_core.h>
#include <linux/netfilter_ipv4/listhelp.h>

#if 0
#define DEBUGP printk
#else
#define DEBUGP(format, args...)
#endif

#define HOOKNAME(hooknum) ((hooknum) == NF_IP6_POST_ROUTING ?
"POST_ROUTING" \
 : ((hooknum) == NF_IP6_PRE_ROUTING ? "PRE_ROUTING"
\
 : ((hooknum) == NF_IP6_LOCAL_OUT ? "LOCAL_OUT"
\
 : ((hooknum) == NF_IP6_LOCAL_IN ? "LOCAL_IN"
\
 : "*ERROR*")))

static inline int call_expect(struct ip6_conntrack *master,
 struct sk_buff **pskb,
 unsigned int hooknum,
 struct ip6_conntrack *ct,
 struct ip6_nat_info *info)
{
 return master->nat.info.helper->expect(pskb, hooknum, ct, info);
}

static unsigned int
ip6_nat_fn(unsigned int hooknum,
 struct sk_buff **pskb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *),
 unsigned int dataoff)
{

 struct ip6_conntrack *ct;
 enum ip6_conntrack_info ctinfo;
 struct ip6_nat_info *info;

170

 /* maniptype == SRC for postrouting. */

 enum ip6_nat_manip_type maniptype = HOOK2MANIP(hooknum);

 /* We never see fragments: conntrack defrags on pre-routing
 and local-out, and ip_nat_out protects post-routing. */

 IP6_NF_ASSERT(!((*pskb)->nh.ipv6h->frag_off
 & htons(IP6_MF|IP6_OFFSET)));

 (*pskb)->nfcache |= NFC_UNKNOWN;

 /* If we had a hardware checksum before, it's now invalid */
 if ((*pskb)->ip_summed == CHECKSUM_HW){
 (*pskb)->ip_summed = CHECKSUM_NONE;
 }
 ct = ip6_conntrack_get(*pskb, &ctinfo);
 /* Can't track? It's not due to stress, or conntrack would
 have dropped it. Hence it's the user's responsibilty to
 packet filter it out, or implement conntrack/NAT for that
 protocol. 8) --RR */

 if (!ct) {

 return NF_ACCEPT;
 }

 switch (ctinfo) {
 case IP6_CT_RELATED:

 case IP6_CT_RELATED+IP6_CT_IS_REPLY:

 if ((*pskb)->nh.ipv6h->nexthdr == IPPROTO_ICMPV6) {

 if (!icmpv6_reply_translation(pskb, ct, hooknum,
 CTINFO2DIR(ctinfo))){

 return NF_DROP;
 }
 else{

 return NF_ACCEPT;
 }
 }

 /* Fall thru... (Only ICMPs can be IP_CT_IS_REPLY) */
 case IP6_CT_NEW:

 info = &ct->nat.info;

 WRITE_LOCK(&ip6_nat_lock);
 /* Seen it before? This can happen for loopback, retrans,
 or local packets.. */

 if (!(info->initialized & (1 << maniptype))
#ifndef CONFIG_IP6_NF_NAT_LOCAL

171

 /* If this session has already been confirmed we must
not
 * touch it again even if there is no mapping set up.
 * Can only happen on local->local traffic with
 * CONFIG_IP6_NF_NAT_LOCAL disabled.
 */
 && !(ct->status & IPS_CONFIRMED)
#endif
) {
 unsigned int ret;

 if (ct->master
 && master_ct6(ct)->nat.info.helper
 && master_ct6(ct)->nat.info.helper->expect) {

 ret = call_expect(master_ct6(ct), pskb,
 hooknum, ct, info);
 } else {
#ifdef CONFIG_IP6_NF_NAT_LOCAL
 /* LOCAL_IN hook doesn't have a chain! */
 if (hooknum == NF_IP6_LOCAL_IN){
 ret = ip6_alloc_null_binding(ct, info,
 hooknum);
}
 else
#endif
 ret = ip6_nat_rule_find(pskb, hooknum, in, out,
 ct, info);
 }
 if (ret != NF_ACCEPT) {

 WRITE_UNLOCK(&ip6_nat_lock);
 return ret;
 }
 } else
 DEBUGP("Already setup manip %s for ct %p\n",
 maniptype == IP6_NAT_MANIP_SRC ? "SRC" :
"DST",
 ct);

 WRITE_UNLOCK(&ip6_nat_lock);
 break;

 default:
 /* ESTABLISHED */

 IP6_NF_ASSERT(ctinfo == IP6_CT_ESTABLISHED
 || ctinfo ==
(IP6_CT_ESTABLISHED+IP6_CT_IS_REPLY));
 info = &ct->nat.info;
 }
 IP6_NF_ASSERT(info);
 return ip6_do_bindings(ct, ctinfo, info, hooknum, pskb, dataoff);
}

static unsigned int
ip6_nat_out(unsigned int hooknum,

172

 struct sk_buff **pskb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *),
 unsigned int dataoff)
{
 /* root is playing with raw sockets. */
 if ((*pskb)->len < sizeof(struct ipv6hdr)
 || IPV6_HDR_LEN < sizeof(struct ipv6hdr)){
 return NF_ACCEPT;
}
 /* We can hit fragment here; forwarded packets get
 defragmented by connection tracking coming in, then
 fragmented (grr) by the forward code.

 In future: If we have nfct != NULL, AND we have NAT
 initialized, AND there is no helper, then we can do full
 NAPT on the head, and IP-address-only NAT on the rest.

 I'm starting to have nightmares about fragments. */

 /*if ((*pskb)->nh.ipv6h->fh & htons(IP6_MF|IP6_OFFSET)) {
 *pskb = ip6_ct_gather_frags(*pskb);

 if (!*pskb)
 return NF_STOLEN;
 }*/
 return ip6_nat_fn(hooknum, pskb, in, out, okfn, dataoff);
}

#ifdef CONFIG_IP6_NF_NAT_LOCAL
static unsigned int
ip6_nat_local_fn(unsigned int hooknum,
 struct sk_buff **pskb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *),
 unsigned int dataoff)
{
 struct in6_addr saddr, daddr;
 unsigned int ret;

 /* root is playing with raw sockets. */
 if ((*pskb)->len < sizeof(struct ipv6hdr)
 || IPV6_HDR_LEN < sizeof(struct ipv6hdr))
 return NF_ACCEPT;

 saddr = (*pskb)->nh.ipv6h->saddr;
 daddr = (*pskb)->nh.ipv6h->daddr;

 ret = ip6_nat_fn(hooknum, pskb, in, out, okfn, dataoff);
 /*if (ret != NF_DROP && ret != NF_STOLEN
 && ((*pskb)->nh.ipv6h->saddr != saddr
 || (*pskb)->nh.ipv6h->daddr != daddr))
 return ip6_route_me_harder(pskb) == 0 ? ret : NF_DROP;*/
 return ret;

173

}
#endif

/* We must be after connection tracking and before packet filtering. */

/* Before packet filtering, change destination */
static struct nf_hook_ops ip6_nat_in_ops = {
 .hook = ip6_nat_fn,
 .owner = THIS_MODULE,
 .pf = PF_INET6,
 .hooknum = NF_IP6_PRE_ROUTING,
 .priority = NF_IP6_PRI_NAT_DST,
};

/* After packet filtering, change source */
static struct nf_hook_ops ip6_nat_out_ops = {
 .hook = ip6_nat_out,
 .owner = THIS_MODULE,
 .pf = PF_INET6,
 .hooknum = NF_IP6_POST_ROUTING,
 .priority = NF_IP6_PRI_NAT_SRC,
};

#ifdef CONFIG_IP6_NF_NAT_LOCAL
/* Before packet filtering, change destination */
static struct nf_hook_ops ip6_nat_local_out_ops = {
 .hook = ip6_nat_local_fn,
 .owner = THIS_MODULE,
 .pf = PF_INET6,
 .hooknum = NF_IP6_LOCAL_OUT,
 .priority = NF_IP6_PRI_NAT_DST,
};

/* After packet filtering, change source for reply packets of LOCAL_OUT
DNAT */
static struct nf_hook_ops ip6_nat_local_in_ops = {
 .hook = ip6_nat_fn,
 .owner = THIS_MODULE,
 .pf = PF_INET6,
 .hooknum = NF_IP6_LOCAL_IN,
 .priority = NF_IP6_PRI_NAT_SRC,
};
#endif

/* Protocol registration. */
int ip6_nat_protocol_register(struct ip6_nat_protocol *proto)
{
 int ret = 0;
 struct list_head *i;

 WRITE_LOCK(&ip6_nat_lock);
 list_for_each(i, &ip6_protos) {
 if (((struct ip6_nat_protocol *)i)->protonum
 == proto->protonum) {
 ret = -EBUSY;
 goto out;
 }

174

 }

 list_prepend(&ip6_protos, proto);
 out:
 WRITE_UNLOCK(&ip6_nat_lock);
 return ret;
}

/* Noone stores the protocol anywhere; simply delete it. */
void ip6_nat_protocol_unregister(struct ip6_nat_protocol *proto)
{
 WRITE_LOCK(&ip6_nat_lock);
 LIST_DELETE(&ip6_protos, proto);
 WRITE_UNLOCK(&ip6_nat_lock);

 /* Someone could be still looking at the proto in a bh. */
 synchronize_net();
}

static int init_or_cleanup(int init)
{
 int ret = 0;

 need_ip6_conntrack();

 if (!init) goto cleanup;

 ret = ip6_nat_rule_init();
 if (ret < 0) {
 printk("ip6_nat_init: can't setup rules.\n");
 goto cleanup_nothing;
 }
 ret = ip6_nat_init();
 if (ret < 0) {
 printk("ip6_nat_init: can't setup rules.\n");
 goto cleanup_rule_init;
 }
 ret = nf_register_hook(&ip6_nat_in_ops);
 if (ret < 0) {
 printk("ip6_nat_init: can't register in hook.\n");
 goto cleanup_nat;
 }
 ret = nf_register_hook(&ip6_nat_out_ops);
 if (ret < 0) {
 printk("ip6_nat_init: can't register out hook.\n");
 goto cleanup_inops;
 }
#ifdef CONFIG_IP6_NF_NAT_LOCAL
 ret = nf_register_hook(&ip6_nat_local_out_ops);
 if (ret < 0) {
 printk("ip6_nat_init: can't register local out hook.\n");
 goto cleanup_outops;
 }
 ret = nf_register_hook(&ip6_nat_local_in_ops);
 if (ret < 0) {
 printk("ip6_nat_init: can't register local in hook.\n");
 goto cleanup_localoutops;

175

 }
#endif
 return ret;

 cleanup:
#ifdef CONFIG_IP6_NF_NAT_LOCAL
 nf_unregister_hook(&ip6_nat_local_in_ops);
 cleanup_localoutops:
 nf_unregister_hook(&ip6_nat_local_out_ops);
 cleanup_outops:
#endif
 nf_unregister_hook(&ip6_nat_out_ops);
 cleanup_inops:
 nf_unregister_hook(&ip6_nat_in_ops);
 cleanup_nat:
 ip6_nat_cleanup();
 cleanup_rule_init:
 ip6_nat_rule_cleanup();
 cleanup_nothing:
 MUST_BE_READ_WRITE_UNLOCKED(&ip6_nat_lock);
 return ret;
}

static int __init init(void)
{
 return init_or_cleanup(1);
}

static void __exit fini(void)
{
 init_or_cleanup(0);
}

module_init(init);
module_exit(fini);

EXPORT_SYMBOL(ip6_nat_setup_info);
EXPORT_SYMBOL(ip6_nat_protocol_register);
EXPORT_SYMBOL(ip6_nat_protocol_unregister);
EXPORT_SYMBOL(ip6_nat_helper_register);
EXPORT_SYMBOL(ip6_nat_helper_unregister);
EXPORT_SYMBOL(ip6_nat_cheat_check);
/*
EXPORT_SYMBOL(ip_nat_cheat_check);
*/
EXPORT_SYMBOL(ip6_nat_mangle_tcp_packet);
EXPORT_SYMBOL(ip6_nat_mangle_udp_packet);
EXPORT_SYMBOL(ip6_nat_used_tuple);
MODULE_LICENSE("GPL");

176

177

/INCLUDE/LINUX/NETFILTER_IPV6/IP6T_IPRANGE.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ ip6t_iprange.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _IP6T_IPRANGE_H
#define _IP6T_IPRANGE_H

#define IPRANGE_SRC 0x01 /* Match source IP address */
#define IPRANGE_DST 0x02 /* Match destination IP address */
#define IPRANGE_SRC_INV 0x10 /* Negate the condition */
#define IPRANGE_DST_INV 0x20 /* Negate the condition */

struct ip6t_iprange {
 /* Inclusive: network order. */
 struct in6_addr min_ip, max_ip;
};

struct ip6t_iprange_info
{
 struct ip6t_iprange src;
 struct ip6t_iprange dst;

 /* Flags from above */
 u_int8_t flags;
};

#endif /* _IP6T_IPRANGE_H */

178

/NET/IPV6/NETFILTER/IP6T_NETMAP.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ipt_NETMAP.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* NETMAP - static NAT mapping of IP network addresses (1:1).
 * The mapping can be applied to source (POSTROUTING),
 * destination (PREROUTING), or both (with separate rules).
 */

/* (C) 2000-2001 Svenning Soerensen <svenning@post5.tele.dk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/config.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv6.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>

#define MODULENAME "NETMAP"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Svenning Soerensen <svenning@post5.tele.dk>");
MODULE_DESCRIPTION("iptables 1:1 NAT mapping of IP networks target");

#if 0
#define DEBUGP printk

179

#else
#define DEBUGP(format, args...)
#endif

static int
check(const char *tablename,
 const struct ip6t_entry *e,
 void *targinfo,
 unsigned int targinfosize,
 unsigned int hook_mask)
{
 const struct ip6_nat_multi_range *mr = targinfo;

 if (strcmp(tablename, "nat") != 0) {
 DEBUGP(MODULENAME":check: bad table `%s'.\n", tablename);
 return 0;
 }
 if (targinfosize != IP6T_ALIGN(sizeof(*mr))) {
 DEBUGP(MODULENAME":check: size %u.\n", targinfosize);
 return 0;
 }
 if (hook_mask & ~((1 << NF_IP6_PRE_ROUTING) | (1 <<
NF_IP6_POST_ROUTING))) {
 DEBUGP(MODULENAME":check: bad hooks %x.\n", hook_mask);
 return 0;
 }
 if (!(mr->range[0].flags & IP6_NAT_RANGE_MAP_IPS)) {
 DEBUGP(MODULENAME":check: bad MAP_IPS.\n");
 return 0;
 }
 if (mr->rangesize != 1) {
 DEBUGP(MODULENAME":check: bad rangesize %u.\n", mr-
>rangesize);
 return 0;
 }
 return 1;
}

static unsigned int
target(struct sk_buff **pskb,
 const struct net_device *in,
 const struct net_device *out,
 unsigned int hooknum,
 const void *targinfo,
 void *userinfo)
{
 struct ip6_conntrack *ct;
 enum ip6_conntrack_info ctinfo;
 struct in6_addr new_ip, netmask;
 const struct ip6_nat_multi_range *mr = targinfo;
 struct ip6_nat_multi_range newrange;

 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING
 || hooknum == NF_IP6_POST_ROUTING);
 ct = ip6_conntrack_get(*pskb, &ctinfo);

180

 netmask.s6_addr[0] = ~(mr->range[0].min_ip.s6_addr[0] ^ mr-
>range[0].max_ip.s6_addr[0]);
 netmask.s6_addr[1] = ~(mr->range[0].min_ip.s6_addr[1] ^ mr-
>range[0].max_ip.s6_addr[1]);
 netmask.s6_addr[2] = ~(mr->range[0].min_ip.s6_addr[2] ^ mr-
>range[0].max_ip.s6_addr[2]);
 netmask.s6_addr[3] = ~(mr->range[0].min_ip.s6_addr[3] ^ mr-
>range[0].max_ip.s6_addr[3]);

 if (hooknum == NF_IP6_PRE_ROUTING){
 new_ip.s6_addr[0] = (*pskb)->nh.ipv6h->daddr.s6_addr[0] &
~netmask.s6_addr[0];
 new_ip.s6_addr[1] = (*pskb)->nh.ipv6h->daddr.s6_addr[1] &
~netmask.s6_addr[1];
 new_ip.s6_addr[2] = (*pskb)->nh.ipv6h->daddr.s6_addr[2] &
~netmask.s6_addr[2];
 new_ip.s6_addr[3] = (*pskb)->nh.ipv6h->daddr.s6_addr[3] &
~netmask.s6_addr[3];
 }
 else{
 new_ip.s6_addr[0] = (*pskb)->nh.ipv6h->saddr.s6_addr[0] &
~netmask.s6_addr[0];
 new_ip.s6_addr[1] = (*pskb)->nh.ipv6h->saddr.s6_addr[1] &
~netmask.s6_addr[1];
 new_ip.s6_addr[2] = (*pskb)->nh.ipv6h->saddr.s6_addr[2] &
~netmask.s6_addr[2];
 new_ip.s6_addr[3] = (*pskb)->nh.ipv6h->saddr.s6_addr[3] &
~netmask.s6_addr[3];
 }

 new_ip.s6_addr[0] |= mr->range[0].min_ip.s6_addr[0] &
netmask.s6_addr[0];
 new_ip.s6_addr[1] |= mr->range[0].min_ip.s6_addr[1] &
netmask.s6_addr[1];
 new_ip.s6_addr[2] |= mr->range[0].min_ip.s6_addr[2] &
netmask.s6_addr[2];
 new_ip.s6_addr[3] |= mr->range[0].min_ip.s6_addr[3] &
netmask.s6_addr[3];

 newrange = ((struct ip6_nat_multi_range)
 { 1, { { mr->range[0].flags | IP6_NAT_RANGE_MAP_IPS,
 new_ip, new_ip,
 mr->range[0].min, mr->range[0].max } } });

 /* Hand modified range to generic setup. */
 return ip6_nat_setup_info(ct, &newrange, hooknum);
}

static struct ip6t_target target_module = {
 .name = MODULENAME,
 .target = target,
 .checkentry = check,
 .me = THIS_MODULE
};

static int __init init(void)
{

181

 return ip6t_register_target(&target_module);
}

static void __exit fini(void)
{
 ip6t_unregister_target(&target_module);
}

module_init(init);
module_exit(fini);

182

/NET/IPV6/NETFILTER/IP6T_SAME.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: net/ipv4/netfilter/ipt_SAME.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* Same. Just like SNAT, only try to make the connections
 * between client A and server B always have the same source ip.
 *
 * (C) 2000 Paul `Rusty' Russell
 * (C) 2001 Martin Josefsson
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * 010320 Martin Josefsson <gandalf@wlug.westbo.se>
 * * copied ipt_BALANCE.c to ipt_SAME.c and changed a few things.
 * 010728 Martin Josefsson <gandalf@wlug.westbo.se>
 * * added --nodst to not include destination-ip in new source
 * calculations.
 * * added some more sanity-checks.
 * 010729 Martin Josefsson <gandalf@wlug.westbo.se>
 * * fixed a buggy if-statement in same_check(), should have
 * used ntohl() but didn't.
 * * added support for multiple ranges. IPT_SAME_MAX_RANGE is
 * defined in linux/include/linux/netfilter_ipv4/ipt_SAME.h
 * and is currently set to 10.
 * * added support for 1-address range, nice to have now that
 * we have multiple ranges.
 */
#include <linux/types.h>
#include <linux/ipv6.h>

183

#include <linux/timer.h>
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/netdevice.h>
#include <linux/if.h>
#include <linux/inetdevice.h>
#include <net/protocol.h>
#include <net/checksum.h>
#include <linux/netfilter_ipv6.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>
#include <linux/netfilter_ipv6/ip6t_SAME.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Martin Josefsson <gandalf@wlug.westbo.se>");
MODULE_DESCRIPTION("iptables special SNAT module for consistent
sourceip");

#if 1
#define DEBUGP printk
#else
#define DEBUGP(format, args...)
#endif

static int
same_check(const char *tablename,
 const struct ip6t_entry *e,
 void *targinfo,
 unsigned int targinfosize,
 unsigned int hook_mask)
{
 unsigned int count, countess0, countess1, countess2, countess3,
rangeip, index = 0;
 struct ip6t_same_info *mr = targinfo;

 mr->ipnum = 0;

 if (strcmp(tablename, "nat") != 0) {
 DEBUGP("same_check: bad table `%s'.\n", tablename);
 return 0;
 }
 if (targinfosize != IP6T_ALIGN(sizeof(*mr))) {
 DEBUGP("same_check: size %u.\n", targinfosize);
 return 0;
 }
 if (hook_mask & ~(1 << NF_IP6_PRE_ROUTING | 1 <<
NF_IP6_POST_ROUTING)) {
 DEBUGP("same_check: bad hooks %x.\n", hook_mask);
 return 0;
 }
 if (mr->rangesize < 1) {
 DEBUGP("same_check: need at least one dest range.\n");
 return 0;
 }
 if (mr->rangesize > IP6T_SAME_MAX_RANGE) {
 DEBUGP("same_check: too many ranges specified, maximum "
 "is %u ranges\n",
 IP6T_SAME_MAX_RANGE);

184

 return 0;
 }
 for (count = 0; count < mr->rangesize; count++) {
 if((ntohl(mr->range[count].min_ip.s6_addr32[0]) >
ntohl(mr->range[count].max_ip.s6_addr32[0]))

 || ((ntohl(mr->range[count].min_ip.s6_addr32[0]) ==
ntohl(mr->range[count].max_ip.s6_addr32[0]))
 && (ntohl(mr->range[count].min_ip.s6_addr32[1]) >
ntohl(mr->range[count].max_ip.s6_addr32[1])))

 || ((ntohl(mr->range[count].min_ip.s6_addr32[0]) ==
ntohl(mr->range[count].max_ip.s6_addr32[0]))
 && (ntohl(mr->range[count].min_ip.s6_addr32[1]) ==
ntohl(mr->range[count].max_ip.s6_addr32[1]))
 && (ntohl(mr->range[count].min_ip.s6_addr32[2]) >
ntohl(mr->range[count].max_ip.s6_addr32[2])))

 || ((ntohl(mr->range[count].min_ip.s6_addr32[0]) ==
ntohl(mr->range[count].max_ip.s6_addr32[0]))
 && (ntohl(mr->range[count].min_ip.s6_addr32[1]) ==
ntohl(mr->range[count].max_ip.s6_addr32[1]))
 && (ntohl(mr->range[count].min_ip.s6_addr32[2]) ==
ntohl(mr->range[count].max_ip.s6_addr32[2]))
 && (ntohl(mr->range[count].min_ip.s6_addr32[3]) >
ntohl(mr->range[count].max_ip.s6_addr32[3]))))
 {
 DEBUGP("same_check: min_ip is larger than max_ip in "
 "range ` %x:%x:%x:%x:%x:%x:%x:%x-
%x:%x:%x:%x:%x:%x:%x:%x'.\n",
 NIP6(mr->range[count].min_ip),
 NIP6(mr->range[count].max_ip));
 return 0;
 }
 if (!(mr->range[count].flags & IP6_NAT_RANGE_MAP_IPS)) {
 DEBUGP("same_check: bad MAP_IPS.\n");
 return 0;
 }
 rangeip = (((ntohl(mr->range[count].max_ip.s6_addr32[0]) -
ntohl(mr->range[count].min_ip.s6_addr32[0])) + 1) *
 ((ntohl(mr->range[count].max_ip.s6_addr32[1]) -
ntohl(mr->range[count].min_ip.s6_addr32[1])) + 1) *
 ((ntohl(mr->range[count].max_ip.s6_addr32[2]) -
ntohl(mr->range[count].min_ip.s6_addr32[2])) + 1) *
 ((ntohl(mr->range[count].max_ip.s6_addr32[3]) -
ntohl(mr->range[count].min_ip.s6_addr32[3])) + 1));
 mr->ipnum += rangeip;
 DEBUGP("same_check: range %u, ipnum = %u\n", count,
rangeip);
 }

 DEBUGP("same_check: total ipaddresses = %u\n", mr->ipnum);
 mr->iparray = kmalloc((sizeof(struct in6_addr) * mr->ipnum),
GFP_KERNEL);
 if (!mr->iparray) {
 DEBUGP("same_check: Couldn't allocate %u bytes "
 "for %u ipaddresses!\n",

185

 (sizeof(struct in6_addr) * mr->ipnum), mr->ipnum);
 return 0;
 }
 DEBUGP("same_check: Allocated %u bytes for %u ipaddresses.\n",
 (sizeof(struct in6_addr) * mr->ipnum), mr->ipnum);

 for (count = 0; count < mr->rangesize; count++) {

 for (countess0 = ntohl(mr->range[count].min_ip.s6_addr32[0]);
 countess0 <= ntohl(mr->range[count].max_ip.s6_addr32[0]);
 countess0++) {

 countess1 = 0;
 for (countess1 = ntohl(mr->range[count].min_ip.s6_addr32[1]);
 countess1 <= ntohl(mr->range[count].max_ip.s6_addr32[1]);
 countess1++) {

 countess2 = 0;
 for (countess2 = ntohl(mr-
>range[count].min_ip.s6_addr32[2]);
 countess2 <= ntohl(mr-
>range[count].max_ip.s6_addr32[2]);
 countess2++) {

 countess3 = 0;
 for (countess3 = ntohl(mr-
>range[count].min_ip.s6_addr32[3]);
 countess3 <= ntohl(mr-
>range[count].max_ip.s6_addr32[3]);
 countess3++) {

 mr->iparray[index].s6_addr32[0] = countess0;
 mr->iparray[index].s6_addr32[1] = countess1;
 mr->iparray[index].s6_addr32[2] = countess2;
 mr->iparray[index].s6_addr32[3] = countess3;

 DEBUGP("same_check: Added ipaddress `
%x:%x:%x:%x:%x:%x:%x:%x' "
 "in index %u.\n",
 NIP6(mr->iparray[index]), index);
 index++;
 }
 }
 }
 }
 }

 return 1;
}

static void
same_destroy(void *targinfo,
 unsigned int targinfosize)
{
 struct ip6t_same_info *mr = targinfo;

 kfree(mr->iparray);

186

 DEBUGP("same_destroy: Deallocated %u bytes for %u
ip6addresses.\n",
 (sizeof(struct in6_addr) * mr->ipnum), mr->ipnum);
}

static unsigned int
same_target(struct sk_buff **pskb,
 const struct net_device *in,
 const struct net_device *out,
 unsigned int hooknum,
 const void *targinfo,
 void *userinfo)
{
 struct ip6_conntrack *ct;
 enum ip6_conntrack_info ctinfo;
 struct in6_addr tmpip, new_ip;
 u_int32_t aindex;
 const struct ip6t_same_info *mr = targinfo;
 struct ip6_nat_multi_range newrange;
 const struct ip6_conntrack_tuple *t;

 IP6_NF_ASSERT(hooknum == NF_IP6_PRE_ROUTING ||
 hooknum == NF_IP6_POST_ROUTING);
 ct = ip6_conntrack_get(*pskb, &ctinfo);

 t = &ct->tuplehash[IP6_CT_DIR_ORIGINAL].tuple;

 /* Base new source on real src ip and optionally dst ip,
 giving some hope for consistency across reboots.
 Here we calculate the index in mr->iparray which
 holds the ipaddress we should use */

 tmpip.s6_addr32[0] = ntohl(t->src.ip.s6_addr32[0]);
 tmpip.s6_addr32[1] = ntohl(t->src.ip.s6_addr32[1]);
 tmpip.s6_addr32[2] = ntohl(t->src.ip.s6_addr32[2]);
 tmpip.s6_addr32[3] = ntohl(t->src.ip.s6_addr32[3]);

 if (!(mr->info & IP6T_SAME_NODST)){
 tmpip.s6_addr32[0] += ntohl(t->dst.ip.s6_addr32[0]);
 tmpip.s6_addr32[1] += ntohl(t->dst.ip.s6_addr32[1]);
 tmpip.s6_addr32[2] += ntohl(t->dst.ip.s6_addr32[2]);
 tmpip.s6_addr32[3] += ntohl(t->dst.ip.s6_addr32[3]);
 }

 aindex = ((tmpip.s6_addr32[0] + tmpip.s6_addr32[1] +
tmpip.s6_addr32[2] + tmpip.s6_addr32[3]) % mr->ipnum);

 new_ip.s6_addr32[0] = ntohl(mr->iparray[aindex].s6_addr32[0]);
 new_ip.s6_addr32[1] = htonl(mr->iparray[aindex].s6_addr32[1]);
 new_ip.s6_addr32[2] = htonl(mr->iparray[aindex].s6_addr32[2]);
 new_ip.s6_addr32[3] = htonl(mr->iparray[aindex].s6_addr32[3]);

 DEBUGP("ip6t_SAME: src= %x:%x:%x:%x:%x:%x:%x:%x dst=
%x:%x:%x:%x:%x:%x:%x:%x, "
 "new src= %x:%x:%x:%x:%x:%x:%x:%x\n",
 NIP6(t->src.ip), NIP6(t->dst.ip),

187

 NIP6(new_ip));

 /* Transfer from original range. */
 newrange = ((struct ip6_nat_multi_range)
 { 1, { { mr->range[0].flags | IP6_NAT_RANGE_MAP_IPS,
 new_ip, new_ip,
 mr->range[0].min, mr->range[0].max } } });

 /* Hand modified range to generic setup. */
 return ip6_nat_setup_info(ct, &newrange, hooknum);
}

static struct ip6t_target same_reg = {
 .name = "SAME",
 .target = same_target,
 .checkentry = same_check,
 .destroy = same_destroy,
 .me = THIS_MODULE,
};

static int __init init(void)
{
 return ip6t_register_target(&same_reg);
}

static void __exit fini(void)
{
 ip6t_unregister_target(&same_reg);
}

module_init(init);
module_exit(fini);

188

/INCLUDE/LINUX/NETFILTER_IPV6/IP6T_SAME.H

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: include/linux/ipt_SAME.h
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _IP6T_SAME_H
#define _IP6T_SAME_H

#define IP6T_SAME_MAX_RANGE 10

#define IP6T_SAME_NODST 0x01

struct ip6t_same_info
{
 unsigned char info;
 u_int32_t rangesize;
 u_int32_t ipnum;
 struct in6_addr *iparray;

 /* hangs off end. */
 struct ip6_nat_range range[IP6T_SAME_MAX_RANGE];
};

#endif /*_IP6T_SAME_H*/

189

/NET/CORE/NETFILTER.C

/* netfilter.c: look after the filters for various protocols.
 * Heavily influenced by the old firewall.c by David Bonn and Alan Cox.
 *
 * Thanks to Rob `CmdrTaco' Malda for not influencing this code in any
 * way.
 *
 * Rusty Russell (C)2000 -- This code is GPL.
 *
 * February 2000: Modified by James Morris to have 1 queue per
protocol.
 * 15-Mar-2000: Added NF_REPEAT --RR.
 * 24-May-2004: Added ip6_skb_make_writable() - TB MP
 */

/*
* * * * * * * * *
 * TB MP - This funciton is the same as skb_ip_make_writable except
variables and function
 * names are updated to reflect changes made in the IPv6 suite. This
function is necessary
 * for NAT, or any other function, to write to the skb.
 *
* * * * * * * * */

int skb_ip6_make_writable(struct sk_buff **pskb, unsigned int
writable_len)
{
 struct sk_buff *nskb;
 unsigned int iplen;

 if (writable_len > (*pskb)->len)
 return 0;

 /* Not exclusive use of packet? Must copy. */
 if (skb_shared(*pskb) || skb_cloned(*pskb))
 goto copy_skb;

 /* Alexey says IP hdr is always modifiable and linear, so ok. */
 if (writable_len <= IPV6_HDR_LEN)
 return 1;

 iplen = writable_len - IPV6_HDR_LEN;

 /* DaveM says protocol headers are also modifiable. */
 switch ((*pskb)->nh.ipv6h->nexthdr) {
 case IPPROTO_TCP: {
 struct tcphdr hdr;
 if (skb_copy_bits(*pskb, IPV6_HDR_LEN,
 &hdr, sizeof(hdr)) != 0)
 goto copy_skb;
 if (writable_len <= (IPV6_HDR_LEN + hdr.doff*4))
 goto pull_skb;
 goto copy_skb;

190

 }
 case IPPROTO_UDP:
 if (writable_len <= IPV6_HDR_LEN + sizeof(struct udphdr))
 goto pull_skb;
 goto copy_skb;
 case IPPROTO_ICMPV6:
 if (writable_len
 <= IPV6_HDR_LEN + sizeof(struct icmp6hdr))
 goto pull_skb;
 goto copy_skb;
 /* Insert other cases here as desired */
 }

copy_skb:
 nskb = skb_copy(*pskb, GFP_ATOMIC);
 if (!nskb)
 return 0;
 BUG_ON(skb_is_nonlinear(nskb));

 /* Rest of kernel will get very unhappy if we pass it a
 suddenly-orphaned skbuff */
 if ((*pskb)->sk)
 skb_set_owner_w(nskb, (*pskb)->sk);
 kfree_skb(*pskb);
 *pskb = nskb;
 return 1;

pull_skb:
 return pskb_may_pull(*pskb, writable_len);
}
EXPORT_SYMBOL(skb_ip6_make_writable);

/* TB MP - END NAT CODE*/

191

/HOME/IPTABLES-1.2.9RC1/EXTENSIONS/LIBIP6T_SNAT.C

/*
 * IPv6 Network Address Translation
 * Linux INET6 Implementation
 *
 * Created based on: /home/iptables-1.2.9rc1/extensions/libipt_SNAT.c
 *
 * Created by:
 * Trevor J. Baumgartner
 * Matthew D. W. Phillips
 *
 *
 *
 * Except where noted, porting involved rote updates of function names
 * and datatypes to reflect those being used in IPv6 versus those being
 * used in IPv4. For example, instead of using an unsigned 32 bit
 * integer for the IPv4 address, an in6_addr struct is used for IPv6,
 * or instead of using the pointer 'icmphdr' to access the icmp header,
 * IPv6 uses 'icmp6hdr'. Substantial changes are explained in detail.
 *
 * Certain areas necessitated breaking the IPv6 address down into array
 * format in order to perform binary operations on the address.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* Shared library add-on to iptables to add source-NAT support. */
#include <stdio.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <ctype.h>
#include <stdarg.h>
#include <limits.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <getopt.h>
#include <ip6tables.h>
#include <linux/netfilter_ipv6/ip6_tables.h>
#include <linux/netfilter_ipv6/ip6_nat_rule.h>

static char *
addr_to_numeric(const struct in6_addr *addrp)
{
 /* 0000:0000:0000:0000:0000:000.000.000.000
 * 0000:0000:0000:0000:0000:0000:0000:0000 */
 static char buf[50+1];

return (char *)inet_ntop(AF_INET6, addrp, buf, sizeof(buf));

192

}

static struct in6_addr *
numeric_to_addr(const char *num)
{
 static struct in6_addr ap;
 int err;
 if ((err=inet_pton(AF_INET6, num, &ap)) == 1)
 return ≈
#ifdef DEBUG
 fprintf(stderr, "\nnumeric2addr: %d\n", err);
#endif
 return (struct in6_addr *)NULL;
}

/* Source NAT data consists of a multi-range, indicating where to
map to. */

struct ip6t_natinfo
{
 struct ip6t_entry_target t;
 struct ip6_nat_multi_range mr;
};

/* Function which prints out usage message. */
static void
help(void)
{
 printf(
"SNAT v%s options:\n"
" --to-source <ipaddr>[-<ipaddr>][:port-port]\n"
" Address to map source to.\n"
" (You can use this more than once)\n\n",
IPTABLES_VERSION);
}

static struct option opts[] = {
 { "to-source", 1, 0, '1' },
 { 0 }
};

/* Initialize the target. */
static void
init(struct ip6t_entry_target *t, unsigned int *nfcache)
{
 /* Can't cache this */
 *nfcache |= NFC_UNKNOWN;
}

static struct ip6t_natinfo *

append_range(struct ip6t_natinfo *info, const struct
ip6_nat_range *range)

{
 unsigned int size;

 /* One rangesize already in struct ipt_natinfo */

193

size = IP6T_ALIGN(sizeof(*info) + info->mr.rangesize *
sizeof(*range));

 info = realloc(info, size);
 if (!info)
 exit_error(OTHER_PROBLEM, "Out of memory\n");

 info->t.u.target_size = size;
 info->mr.range[info->mr.rangesize] = *range;
 info->mr.rangesize++;

 return info;
}

/* Ranges expected in network order. */
static struct ip6t_entry_target *
parse_to(char *arg, int portok, struct ip6t_natinfo *info)
{
 struct ip6_nat_range range;
 char *colon;
 memset(&range, 0, sizeof(range));
 colon = strchr(arg, '@');
 struct in6_addr *ip;

/*TB MP – This section deals with ports. The scope of our work
did not require port mappings or IP ranges therefore this section
was commented out and is untested*/

 /*
 if(colon){
 if (!portok)
 exit_error(PARAMETER_PROBLEM,
 "Need TCP or UDP with port specification");

 range.flags |= IP6_NAT_RANGE_PROTO_SPECIFIED;

 port = atoi(colon+1);
 if (port == 0 || port > 65535)
 exit_error(PARAMETER_PROBLEM,
 "Port `%s' not valid\n", colon+1);

 dash = strchr(colon, '-');
 if (!dash) {
 range.min.tcp.port
 = range.max.tcp.port
 = htons(port);
 } else {
 int maxport;

 maxport = atoi(dash + 1);
 if (maxport == 0 || maxport > 65535)
 exit_error(PARAMETER_PROBLEM,
 "Port `%s' not valid\n", dash+1);
 if (maxport < port)

 exit_error(PARAMETER_PROBLEM,
 "Port range `%s' funky\n", colon+1);

194

 range.min.tcp.port = htons(port);
 range.max.tcp.port = htons(maxport);
 }

 if (colon == arg)
 return &(append_range(info, &range)->t);
 *colon = '\0';

 range.flags |= IP6_NAT_RANGE_MAP_IPS;
 dash = strchr(arg, '-');
 if (colon && dash && dash > colon)
 dash = NULL;

 if (dash)
 *dash = '\0';
 */
 ip = numeric_to_addr(arg);
 range.flags |= IP6_NAT_RANGE_MAP_IPS;
 if (!ip)

exit_error(PARAMETER_PROBLEM, "Bad IP address
`%s'\n", arg);

 range.min_ip.s6_addr32[0] = ip->s6_addr32[0];
 range.min_ip.s6_addr32[1] = ip->s6_addr32[1];
 range.min_ip.s6_addr32[2] = ip->s6_addr32[2];
 range.min_ip.s6_addr32[3] = ip->s6_addr32[3];

 /*
 if (dash) {
 ip = dotted_to_addr(dash+1);
 if (!ip)

exit_error(PARAMETER_PROBLEM, "Bad IP address
`%s'\n", dash+1

 } else{
 */

 return &(append_range(info, &range)->t);
}

/* Function which parses command options; returns true if it
 ate an option */
static int
parse(int c, char **argv, int invert, unsigned int *flags,
 const struct ip6t_entry *entry,
 struct ip6t_entry_target **target)
{
 struct ip6t_natinfo *info = (void *)*target;
 int portok;

 if (entry->ipv6.proto == IPPROTO_TCP
 || entry->ipv6.proto == IPPROTO_UDP)
 portok = 1;
 else
 portok = 0;

 switch (c) {

195

 case '1':
 if (check_inverse(optarg, &invert, NULL, 0))
 exit_error(PARAMETER_PROBLEM,
 "Unexpected `!' after --to-source");

 *target = parse_to(optarg, portok, info);
 *flags = 1;
 return 1;
 default:
 return 0;
 }
}

/* Final check; must have specfied --to-source. */
static void final_check(unsigned int flags)
{
 if (!flags)
 exit_error(PARAMETER_PROBLEM,
 "You must specify --to-source");
}

static void print_range(const struct ip6_nat_range *r)
{
 if (r->flags & IP6_NAT_RANGE_MAP_IPS) {

 struct in6_addr a;
 a.s6_addr32[0] = r->min_ip.s6_addr32[0];
 a.s6_addr32[1] = r->min_ip.s6_addr32[1];
 a.s6_addr32[2] = r->min_ip.s6_addr32[2];
 a.s6_addr32[3] = r->min_ip.s6_addr32[3];
 printf("%s", addr_to_numeric(&a));
 if ((r->max_ip.s6_addr32[0] != r->min_ip.s6_addr32[0]) ||
 (r->max_ip.s6_addr32[1] != r->min_ip.s6_addr32[1]) ||
 (r->max_ip.s6_addr32[2] != r->min_ip.s6_addr32[2]) ||
 (r->max_ip.s6_addr32[3] != r->min_ip.s6_addr32[3])) {
 a.s6_addr32[0] = r->max_ip.s6_addr32[0];
 a.s6_addr32[1] = r->max_ip.s6_addr32[1];
 a.s6_addr32[2] = r->max_ip.s6_addr32[2];
 a.s6_addr32[3] = r->max_ip.s6_addr32[3];
 printf("-%s", addr_to_numeric(&a));
 }
 }
 if (r->flags & IP6_NAT_RANGE_PROTO_SPECIFIED) {
 printf(":");
 printf("%hu", ntohs(r->min.tcp.port));
 if (r->max.tcp.port != r->min.tcp.port)
 printf("-%hu", ntohs(r->max.tcp.port));
 }
}

/* Prints out the targinfo. */
static void
print(const struct ip6t_ip6 *ip,
 const struct ip6t_entry_target *target,
 int numeric)
{
 struct ip6t_natinfo *info = (void *)target;

196

 unsigned int i = 0;

 printf("to: ");
 for (i = 0; i < info->mr.rangesize; i++) {
 print_range(&info->mr.range[i]);
 printf(" ");
 }
}

/* Saves the union ip6t_targinfo in parsable form to stdout. */
static void
save(const struct ip6t_ip6 *ip, const struct ip6t_entry_target *target)
{
 struct ip6t_natinfo *info = (void *)target;
 unsigned int i = 0;

 for (i = 0; i < info->mr.rangesize; i++) {
 printf("--to-source ");
 print_range(&info->mr.range[i]);
 printf(" ");
 }
}

static
struct ip6tables_target snat
= { NULL,
 "SNAT",
 IPTABLES_VERSION,
 IP6T_ALIGN(sizeof(struct ip6_nat_multi_range)),
 IP6T_ALIGN(sizeof(struct ip6_nat_multi_range)),
 &help,
 &init,
 &parse,
 &final_check,
 &print,
 &save,
 opts
};

void _init(void)
{
 register_target6(&snat);
}

197

APPENDIX D. TESTING RESULTS

This appendix contains the Ethereal outputs for a

series of connectivity tests. The purpose of these tests

was to verify the functionality of the NAT implementation

for several different protocols. The following sections

will be labeled by the testing program, the machine on

which the Ethereal output is collected and, if applicable,

the interface of the system. The following figure shows the

topology of the MYSEA IPv6 NAT testing environment. It

illustrates the locations of the machines as well as their

IPv6 addresses and MAC addresses.

Figure 16. MYSEA IPv6 NAT Testing Environment

198

PING6 – CLIENT

This Ethereal output shows the packet sequence as seen

by the eth0 interface of the client. The importance of this

sequence is that an echo request was successfully sent to

2004::2 and the reply was received by 2003::3. The

following command was issued by the client to produce this

result:

ping6 –c 1 2004::2

No. Time Source Destination Protocol Info
 1 0.000000 2003::3 ff02::1:ff00:1 ICMPv6 Neighbor
solicitation

Frame 1 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 33:33:ff:00:00:01
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 2 0.000213 2003::1 2003::3 ICMPv6 Neighbor
advertisement

Frame 2 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 3 0.000230 2003::3 2004::2 ICMPv6 Echo request

Frame 3 (118 bytes on wire, 118 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 4 0.001486 2004::2 2003::3 ICMPv6 Echo reply

Frame 4 (118 bytes on wire, 118 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 5 4.999079 fe80::2c0:a8ff:fe88:89f2 2003::3 ICMPv6 Neighbor
solicitation

Frame 5 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

199

No. Time Source Destination Protocol Info
 6 4.999106 2003::3 fe80::2c0:a8ff:fe88:89f2 ICMPv6 Neighbor
advertisement

Frame 6 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Internet Control Message Protocol v6

PING6 – SERVER

This Ethereal output shows the packet sequence as seen

by the eth0 interface of the server. The importance of this

sequence is that an echo request was successfully forwarded

to 2004::2 by the TPE at the address 2004::1. The following

command was issued by the client to produce this result:

ping6 –c 1 2004::2

No. Time Source Destination Protocol Info
 1 0.000000 2004::1 ff02::1:ff00:2 ICMPv6 Neighbor
solicitation

Frame 1 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 33:33:ff:00:00:02
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 2 0.000036 2004::2 2004::1 ICMPv6 Neighbor
advertisement

Frame 2 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 3 0.000167 2004::1 2004::2 ICMPv6 Echo request

Frame 3 (118 bytes on wire, 118 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 4 0.000181 2004::2 2004::1 ICMPv6 Echo reply

Frame 4 (118 bytes on wire, 118 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

200

No. Time Source Destination Protocol Info
 5 4.995768 fe80::20d:56ff:feae:a500 2004::1 ICMPv6 Neighbor
solicitation

Frame 5 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 6 4.995992 2004::1 fe80::20d:56ff:feae:a500 ICMPv6 Neighbor
advertisement

Frame 6 (78 bytes on wire, 78 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 7 9.995195 fe80::2c0:a8ff:fe88:876c fe80::20d:56ff:feae:a500 ICMPv6 Neighbor
solicitation

Frame 7 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 8 9.995222 fe80::20d:56ff:feae:a500 fe80::2c0:a8ff:fe88:876c ICMPv6 Neighbor
advertisement

Frame 8 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

PING6 – TPE – ETH0

This tcpdump output shows the packet sequence as seen

by the eth0 interface of the TPE. Tcpdump was used on the

TPE because it is a native OS program and would not

introduce new code to the kernel. The importance of this

sequence is that an echo request from 2003::3 was forwarded

to 2004::2 and the resulting reply was again forwarded to

2003::3. Note that at this point, eth0 on the TPE, the

address of the client is still the true address, i.e.,

2003::3. The following command was issued by the client to

produce this result:

ping6 –c 1 2004::2

201

14:21:05.566665 2003::3 > ff02::1:ff00:1: icmp6: neighbor sol: who has 2003::1(src
lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0003 ff02 0000 0000 0000
0x0020 0000 0001 ff00 0001 8700 07ce 0000 0000
0x0030 2003 0000 0000 0000 0000 0000 0000 0001
0x0040 0101 00c0 a888 887d }

14:21:05.566802 2003::1 > 2003::3: icmp6: neighbor adv: tgt is 2003::1(RSO)(tgt lladdr:
00:c0:a8:88:89:f2) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 8800 025a e000 0000Z....
0x0030 2003 0000 0000 0000 0000 0000 0000 0001
0x0040 0201 00c0 a888 89f2

14:21:05.566893 2003::3 > 2004::2: icmp6: echo request (len 64, hlim 64)
0x0000 6000 0000 0040 3a40 2003 0000 0000 0000 `....@:@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 8000 78ae ea04 0001x.....
0x0030 3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i..........
0x0040 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
0x0050 2021 .!

14:21:05.568097 2004::2 > 2003::3: icmp6: echo reply (len 64, hlim 63)
0x0000 6000 0000 0040 3a3f 2004 0000 0000 0000 `....@:?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 8100 77ae ea04 0001w.....
0x0030 3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i..........
0x0040 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
0x0050 2021 .!

14:21:10.565796 fe80::2c0:a8ff:fe88:89f2 > 2003::3: icmp6: neighbor sol: who has
2003::3(src lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 02c0 a8ff fe88 89f2 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 8700 d1a0 0000 0000
0x0030 2003 0000 0000 0000 0000 0000 0000 0003
0x0040 0101 00c0 a888 89f2

14:21:10.565871 2003::3 > fe80::2c0:a8ff:fe88:89f2: icmp6: neighbor adv: tgt is
2003::3(SO)(tgt lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0003 fe80 0000 0000 0000
0x0020 02c0 a8ff fe88 89f2 8800 7115 6000 0000q.`...
0x0030 2003 0000 0000 0000 0000 0000 0000 0003
0x0040 0201 00c0 a888 887d }

PING6 – TPE – ETH1

This tcpdump output shows the packet sequence as seen

by the eth1 interface of the TPE. The importance of this

sequence is that an echo request from the client received

at 2004::1 was successfully forwarded to 2004::2 and the

202

resulting reply was receieved by 2004::1. Note that the

address of the client is now masked by the NAT mechanism.

The following command was issued by the client to produce

this result:

ping6 –c 1 2004::2

14:21:05.567757 2004::1 > ff02::1:ff00:2: icmp6: neighbor sol: who has 2004::2(src
lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 ff02 0000 0000 0000
0x0020 0000 0001 ff00 0002 8700 08dd 0000 0000
0x0030 2004 0000 0000 0000 0000 0000 0000 0002
0x0040 0101 00c0 a888 876c l

14:21:05.567861 2004::2 > 2004::1: icmp6: neighbor adv: tgt is 2004::2(SO)(tgt lladdr:
00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 8800 b9d6 6000 0000`...
0x0030 2004 0000 0000 0000 0000 0000 0000 0002
0x0040 0201 000d 56ae a500 V...

14:21:05.567924 2004::1 > 2004::2: icmp6: echo request (len 64, hlim 63)
0x0000 6000 0000 0040 3a3f 2004 0000 0000 0000 `....@:?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 8000 78af ea04 0001x.....
0x0030 3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i..........
0x0040 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
0x0050 2021 .!

14:21:05.568008 2004::2 > 2004::1: icmp6: echo reply (len 64, hlim 64)
0x0000 6000 0000 0040 3a40 2004 0000 0000 0000 `....@:@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 8100 77af ea04 0001w.....
0x0030 3817 b540 fc69 0800 0809 0a0b 0c0d 0e0f 8..@.i..........
0x0040 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
0x0050 2021 .!

14:21:10.563537 fe80::20d:56ff:feae:a500 > 2004::1: icmp6: neighbor sol: who has
2004::1(src lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 020d 56ff feae a500 2004 0000 0000 0000 ..V.............
0x0020 0000 0000 0000 0001 8700 40a1 0000 0000@.....
0x0030 2004 0000 0000 0000 0000 0000 0000 0001
0x0040 0101 000d 56ae a500 V...

14:21:10.563690 2004::1 > fe80::20d:56ff:feae:a500: icmp6: neighbor adv: tgt is
2004::1(RS) (len 24, hlim 255)
0x0000 6000 0000 0018 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 fe80 0000 0000 0000
0x0020 020d 56ff feae a500 8800 7c65 c000 0000 ..V.......|e....
0x0030 2004 0000 0000 0000 0000 0000 0000 0001

14:21:15.562827 fe80::2c0:a8ff:fe88:876c > fe80::20d:56ff:feae:a500: icmp6: neighbor sol:
who has fe80::20d:56ff:feae:a500(src lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........

203

0x0010 02c0 a8ff fe88 876c fe80 0000 0000 0000l........
0x0020 020d 56ff feae a500 8700 203f 0000 0000 ..V........?....
0x0030 fe80 0000 0000 0000 020d 56ff feae a500V.....
0x0040 0101 00c0 a888 876c l

14:21:15.562925 fe80::20d:56ff:feae:a500 > fe80::2c0:a8ff:fe88:876c: icmp6: neighbor adv:
tgt is fe80::20d:56ff:feae:a500(SO)(tgt lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 020d 56ff feae a500 fe80 0000 0000 0000 ..V.............
0x0020 02c0 a8ff fe88 876c 8800 f337 6000 0000l...7`...
0x0030 fe80 0000 0000 0000 020d 56ff feae a500V.....
0x0040 0201 000d 56ae a500 V...

RLOGIN – CLIENT

This Ethereal output shows the packet sequence as seen

by the eth0 interface of the client. The importance of this

sequence is that the rlogin sequence was successfully sent

to 2004::2 and the replies were received by 2003::3. The

following command was issued by the client to produce this

result:

rlogin 2004::2

No. Time Source Destination Protocol Info
 1 0.000000 2003::3 2004::2 TCP 1023 > login
[SYN] Seq=0 Ack=0 Win=5760 Len=0 MSS=1440 TSV=1146738 TSER=0 WS=0

Frame 1 (94 bytes on wire, 94 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 0, Ack:
0, Len: 0

No. Time Source Destination Protocol Info
 2 0.001140 fe80::2c0:a8ff:fe88:89f2 ff02::1:ff00:3 ICMPv6 Neighbor
solicitation

Frame 2 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 33:33:ff:00:00:03
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 3 0.001168 2003::3 fe80::2c0:a8ff:fe88:89f2 ICMPv6 Neighbor
advertisement

Frame 3 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info

204

 4 0.001278 2004::2 2003::3 TCP login > 1023
[SYN, ACK] Seq=0 Ack=1 Win=5712 Len=0 MSS=1440 TSV=27902 TSER=1146738 WS=0

Frame 4 (94 bytes on wire, 94 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 0, Ack:
1, Len: 0

No. Time Source Destination Protocol Info
 5 0.001295 2003::3 2004::2 TCP 1023 > login
[ACK] Seq=1 Ack=1 Win=5760 Len=0 TSV=1146738 TSER=27902

Frame 5 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack:
1, Len: 0

No. Time Source Destination Protocol Info
 6 0.001365 2003::3 2004::2 Rlogin User name: root,
Start Handshake

Frame 6 (87 bytes on wire, 87 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack:
1, Len: 1
Rlogin Protocol

No. Time Source Destination Protocol Info
 7 0.001535 2004::2 2003::3 TCP login > 1023
[ACK] Seq=1 Ack=2 Win=5712 Len=0 TSV=27903 TSER=1146738

Frame 7 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack:
2, Len: 0

No. Time Source Destination Protocol Info
 8 0.001658 2003::3 2004::2 Rlogin User name: root,
Data: root

Frame 8 (109 bytes on wire, 109 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 2, Ack:
1, Len: 23
Rlogin Protocol

No. Time Source Destination Protocol Info
 9 0.001830 2004::2 2003::3 TCP login > 1023
[ACK] Seq=1 Ack=25 Win=5712 Len=0 TSV=27903 TSER=1146738

Frame 9 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack:
25, Len: 0

205

No. Time Source Destination Protocol Info
 10 0.154152 2004::2 2003::3 Rlogin User name: root,
Start Handshake

Frame 10 (87 bytes on wire, 87 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack:
25, Len: 1
Rlogin Protocol

No. Time Source Destination Protocol Info
 11 0.154329 2003::3 2004::2 TCP 1023 > login
[ACK] Seq=25 Ack=2 Win=5760 Len=0 TSV=1146753 TSER=27918

Frame 11 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25,
Ack: 2, Len: 0

No. Time Source Destination Protocol Info
 12 0.155758 2004::2 2003::3 Rlogin User name: root,
Data: Password:

Frame 12 (96 bytes on wire, 96 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 2, Ack:
25, Len: 10
Rlogin Protocol

No. Time Source Destination Protocol Info
 13 0.155898 2003::3 2004::2 TCP 1023 > login
[ACK] Seq=25 Ack=12 Win=5760 Len=0 TSV=1146753 TSER=27918

Frame 13 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25,
Ack: 12, Len: 0

RLOGIN – SERVER

This Ethereal output shows the packet sequence as seen

by the eth0 interface of the server. The importance of this

sequence is that the rlogin request was successfully

forwarded to 2004::2 by the TPE at the address 2004::1.

Note that the address of the client is successfully masked

by the NAT mechanism in the TPE. The following command was

issued by the client to produce this result:

rlogin 2004::2

206

No. Time Source Destination Protocol Info
 1 0.000000 fe80::20d:56ff:feae:a500 ff02::1:ff00:2 ICMPv6 Multicast
listener report

Frame 1 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 33:33:ff:00:00:02
Internet Protocol Version 6
Hop-by-hop Option Header
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 2 61.169069 2004::1 ff02::1:ff00:2 ICMPv6 Neighbor
solicitation

Frame 2 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 33:33:ff:00:00:02
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 3 61.169105 2004::2 2004::1 ICMPv6 Neighbor
advertisement

Frame 3 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 4 61.169243 2004::1 2004::2 TCP 1023 > login
[SYN] Seq=0 Ack=0 Win=5760 Len=0 MSS=1440 TSV=1146738 TSER=0 WS=0

Frame 4 (94 bytes on wire, 94 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 0, Ack:
0, Len: 0

No. Time Source Destination Protocol Info
 5 61.169504 2004::2 2004::1 TCP login > 1023
[SYN, ACK] Seq=0 Ack=1 Win=5712 Len=0 MSS=1440 TSV=27902 TSER=1146738 WS=0

Frame 5 (94 bytes on wire, 94 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 0, Ack:
1, Len: 0

No. Time Source Destination Protocol Info
 6 61.170227 2004::1 2004::2 TCP 1023 > login
[ACK] Seq=1 Ack=1 Win=5760 Len=0 TSV=1146738 TSER=27902

Frame 6 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack:
1, Len: 0

207

No. Time Source Destination Protocol Info
 7 61.170289 2004::1 2004::2 Rlogin User name: root,
Start Handshake

Frame 7 (87 bytes on wire, 87 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 1, Ack:
1, Len: 1
Rlogin Protocol

No. Time Source Destination Protocol Info
 8 61.170302 2004::2 2004::1 TCP login > 1023
[ACK] Seq=1 Ack=2 Win=5712 Len=0 TSV=27903 TSER=1146738

Frame 8 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack:
2, Len: 0

No. Time Source Destination Protocol Info
 9 61.170592 2004::1 2004::2 Rlogin User name: root,
Data: root

Frame 9 (109 bytes on wire, 109 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 2, Ack:
1, Len: 23
Rlogin Protocol

No. Time Source Destination Protocol Info
 10 61.170597 2004::2 2004::1 TCP login > 1023
[ACK] Seq=1 Ack=25 Win=5712 Len=0 TSV=27903 TSER=1146738

Frame 10 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack:
25, Len: 0

No. Time Source Destination Protocol Info
 11 61.192370 2004::2 2004::1 TCP 32803 > auth
[SYN] Seq=0 Ack=0 Win=5760 Len=0 MSS=1440 TSV=27905 TSER=0 WS=0

Frame 11 (94 bytes on wire, 94 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 32803 (32803), Dst Port: auth (113), Seq: 0,
Ack: 0, Len: 0

No. Time Source Destination Protocol Info
 12 61.192547 2004::1 2004::2 TCP auth > 32803
[RST, ACK] Seq=0 Ack=0 Win=0 Len=0

Frame 12 (74 bytes on wire, 74 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6

208

Transmission Control Protocol, Src Port: auth (113), Dst Port: 32803 (32803), Seq: 0,
Ack: 0, Len: 0

No. Time Source Destination Protocol Info
 13 61.322880 2004::2 2004::1 Rlogin User name: root,
Start Handshake

Frame 13 (87 bytes on wire, 87 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 1, Ack:
25, Len: 1
Rlogin Protocol

No. Time Source Destination Protocol Info
 14 61.323266 2004::1 2004::2 TCP 1023 > login
[ACK] Seq=25 Ack=2 Win=5760 Len=0 TSV=1146753 TSER=27918

Frame 14 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25,
Ack: 2, Len: 0

No. Time Source Destination Protocol Info
 15 61.324522 2004::2 2004::1 Rlogin User name: root,
Data: Password:

Frame 15 (96 bytes on wire, 96 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Transmission Control Protocol, Src Port: login (513), Dst Port: 1023 (1023), Seq: 2, Ack:
25, Len: 10
Rlogin Protocol

No. Time Source Destination Protocol Info
 16 61.324830 2004::1 2004::2 TCP 1023 > login
[ACK] Seq=25 Ack=12 Win=5760 Len=0 TSV=1146753 TSER=27918

Frame 16 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Transmission Control Protocol, Src Port: 1023 (1023), Dst Port: login (513), Seq: 25,
Ack: 12, Len: 0

RLOGIN – TPE – ETH0

This tcpdump output shows the packet sequence as seen

by the eth0 interface of the TPE. The importance of this

sequence is that the rlogin request from 2003::3 was

forwarded to 2004::2 and the resulting reply was again

forwarded to 2003::3. Note that at this point, the address

of the client is still the true address. The following

command was issued by the client to produce this result:

209

rlogin 2004::2

17:28:06.644285 2003::3.1023 > 2004::2.login: S [tcp sum ok] 2268744467:2268744467(0) win
5760 <mss 1440,sackOK,timestamp 1146738 0,nop,wscale 0> (len 40, hlim 64)
0x0000 6000 0000 0028 0640 2003 0000 0000 0000 `....(.@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b13:K.
0x0030 0000 0000 a002 1680 99be 0000 0204 05a0
0x0040 0402 080a 0011 7f72 0000 0000 0103 0300r........

17:28:06.645375 fe80::2c0:a8ff:fe88:89f2 > ff02::1:ff00:3: icmp6: neighbor sol: who has
2003::3(src lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 02c0 a8ff fe88 89f2 ff02 0000 0000 0000
0x0020 0000 0001 ff00 0003 8700 f39e 0000 0000
0x0030 2003 0000 0000 0000 0000 0000 0000 0003
0x0040 0101 00c0 a888 89f2

17:28:06.645447 2003::3 > fe80::2c0:a8ff:fe88:89f2: icmp6: neighbor adv: tgt is
2003::3(SO)(tgt lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0003 fe80 0000 0000 0000
0x0020 02c0 a8ff fe88 89f2 8800 7115 6000 0000q.`...
0x0030 2003 0000 0000 0000 0000 0000 0000 0003
0x0040 0201 00c0 a888 887d }

17:28:06.645510 2004::2.login > 2003::3.1023: S [tcp sum ok] 3072001763:3072001763(0) ack
2268744468 win 5712 <mss 1440,sackOK,timestamp 27902 1146738,nop,wscale 0> (len 40, hlim
63)
0x0000 6000 0000 0028 063f 2004 0000 0000 0000 `....(.?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0201 03ff b71b 06e3
0x0030 873a 4b14 a012 1650 6ee0 0000 0204 05a0 .:K....Pn.......
0x0040 0402 080a 0000 6cfe 0011 7f72 0103 0300l....r....

17:28:06.645574 2003::3.1023 > 2004::2.login: . [tcp sum ok] 1:1(0) ack 1 win 5760
<nop,nop,timestamp 1146738 27902> (len 32, hlim 64)
0x0000 6000 0000 0020 0640 2003 0000 0000 0000 `......@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b14:K.
0x0030 b71b 06e4 8010 1680 9d61 0000 0101 080aa......
0x0040 0011 7f72 0000 6cfe ...r..l.

17:28:06.645644 2003::3.1023 > 2004::2.login: P [tcp sum ok] 1:2(1) ack 1 win 5760
<nop,nop,timestamp 1146738 27902> (len 33, hlim 64)
0x0000 6000 0000 0021 0640 2003 0000 0000 0000 `....!.@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b14:K.
0x0030 b71b 06e4 8018 1680 9d58 0000 0101 080aX......
0x0040 0011 7f72 0000 6cfe 00 ...r..l..

17:28:06.645769 2004::2.login > 2003::3.1023: . [tcp sum ok] 1:1(0) ack 2 win
5712 <nop,nop,timestamp 27903 1146738> (len 32, hlim 63)
0x0000 6000 0000 0020 063f 2004 0000 0000 0000 `......?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0201 03ff b71b 06e4
0x0030 873a 4b15 8010 1650 9d8f 0000 0101 080a .:K....P........
0x0040 0000 6cff 0011 7f72 ..l....r

17:28:06.645940 2003::3.1023 > 2004::2.login: P 2:25(23) ack 1 win 5760
<nop,nop,timestamp 1146738 27903> (len 55, hlim 64)

210

0x0000 6000 0000 0037 0640 2003 0000 0000 0000 `....7.@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b15:K.
0x0030 b71b 06e4 8018 1680 6e3d 0000 0101 080an=......
0x0040 0011 7f72 0000 6cff 726f 6f74 0061 646d ...r..l.root.adm
0x0050 696e in

17:28:06.646065 2004::2.login > 2003::3.1023: . [tcp sum ok] 1:1(0) ack 25 win 5712
<nop,nop,timestamp 27903 1146738> (len 32, hlim 63)
0x0000 6000 0000 0020 063f 2004 0000 0000 0000 `......?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0201 03ff b71b 06e4
0x0030 873a 4b2c 8010 1650 9d78 0000 0101 080a .:K,...P.x......
0x0040 0000 6cff 0011 7f72 ..l....r

17:28:06.798386 2004::2.login > 2003::3.1023: P [tcp sum ok] 1:2(1) ack 25 win 5712
<nop,nop,timestamp 27918 1146738> (len 33, hlim 63)
0x0000 6000 0000 0021 063f 2004 0000 0000 0000 `....!.?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0201 03ff b71b 06e4
0x0030 873a 4b2c 8018 1650 9d60 0000 0101 080a .:K,...P.`......
0x0040 0000 6d0e 0011 7f72 00 ..m....r.

17:28:06.798613 2003::3.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 2 win 5760
<nop,nop,timestamp 1146753 27918> (len 32, hlim 64)
0x0000 6000 0000 0020 0640 2003 0000 0000 0000 `......@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b2c:K,
0x0030 b71b 06e5 8010 1680 9d29 0000 0101 080a)......
0x0040 0011 7f81 0000 6d0e m.

17:28:06.799994 2004::2.login > 2003::3.1023: P [tcp sum ok] 2:12(10) ack 25 win 5712
<nop,nop,timestamp 27918 1146753> (len 42, hlim 63)
0x0000 6000 0000 002a 063f 2004 0000 0000 0000 `....*.?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0201 03ff b71b 06e5
0x0030 873a 4b2c 8018 1650 b57e 0000 0101 080a .:K,...P.~......
0x0040 0000 6d0e 0011 7f81 5061 7373 776f 7264 ..m.....Password
0x0050 3a20 :.

17:28:06.800181 2003::3.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 12 win 5760
<nop,nop,timestamp 1146753 27918> (len 32, hlim 64)
0x0000 6000 0000 0020 0640 2003 0000 0000 0000 `......@........
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b2c:K,
0x0030 b71b 06ef 8010 1680 9d1f 0000 0101 080a
0x0040 0011 7f81 0000 6d0e m.

RLOGIN – TPE – ETH1

This tcpdump output shows the packet sequence as seen

by the eth1 interface of the TPE. The importance of this

sequence is that an rlogin session from the client was

translated to appear as if it came from 2004::1. The

translated packet was successfully communicated to 2004::2

and the resulting replies were received by 2004::1. Note

that the address of the client is now masked by the NAT

211

mechanism. The following command was issued by the client

to produce this result:

rlogin 2004::2

17:28:06.644443 2004::1 > ff02::1:ff00:2: icmp6: neighbor sol: who has 2004::2(src
lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 ff02 0000 0000 0000
0x0020 0000 0001 ff00 0002 8700 08dd 0000 0000
0x0030 2004 0000 0000 0000 0000 0000 0000 0002
0x0040 0101 00c0 a888 876c l

17:28:06.644550 2004::2 > 2004::1: icmp6: neighbor adv: tgt is 2004::2(SO)(tgt lladdr:
00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 8800 b9d6 6000 0000`...
0x0030 2004 0000 0000 0000 0000 0000 0000 0002
0x0040 0201 000d 56ae a500 V...

17:28:06.644623 2004::1.1023 > 2004::2.login: S [tcp sum ok] 2268744467:2268744467(0) win
5760 <mss 1440,sackOK,timestamp 1146738 0,nop,wscale 0> (len 40, hlim 63)
0x0000 6000 0000 0028 063f 2004 0000 0000 0000 `....(.?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b13:K.
0x0030 0000 0000 a002 1680 99bf 0000 0204 05a0
0x0040 0402 080a 0011 7f72 0000 0000 0103 0300r........

17:28:06.644947 2004::2.login > 2004::1.1023: S [tcp sum ok] 3072001763:3072001763(0) ack
2268744468 win 5712 <mss 1440,sackOK,timestamp 27902 1146738,nop,wscale 0> (len 40, hlim
64)
0x0000 6000 0000 0028 0640 2004 0000 0000 0000 `....(.@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 0201 03ff b71b 06e3
0x0030 873a 4b14 a012 1650 6ee1 0000 0204 05a0 .:K....Pn.......
0x0040 0402 080a 0000 6cfe 0011 7f72 0103 0300l....r....

17:28:06.645599 2004::1.1023 > 2004::2.login: . [tcp sum ok] 1:1(0) ack 1 win 5760
<nop,nop,timestamp 1146738 27902> (len 32, hlim 63)
0x0000 6000 0000 0020 063f 2004 0000 0000 0000 `......?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b14:K.
0x0030 b71b 06e4 8010 1680 9d62 0000 0101 080ab......
0x0040 0011 7f72 0000 6cfe ...r..l.

17:28:06.645667 2004::1.1023 > 2004::2.login: P [tcp sum ok] 1:2(1) ack 1 win 5760
<nop,nop,timestamp 1146738 27902> (len 33, hlim 63)
0x0000 6000 0000 0021 063f 2004 0000 0000 0000 `....!.?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b14:K.
0x0030 b71b 06e4 8018 1680 9d59 0000 0101 080aY......
0x0040 0011 7f72 0000 6cfe 00 ...r..l..

17:28:06.645745 2004::2.login > 2004::1.1023: . [tcp sum ok] 1:1(0) ack 2 win 5712
<nop,nop,timestamp 27903 1146738> (len 32, hlim 64)
0x0000 6000 0000 0020 0640 2004 0000 0000 0000 `......@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 0201 03ff b71b 06e4
0x0030 873a 4b15 8010 1650 9d90 0000 0101 080a .:K....P........
0x0040 0000 6cff 0011 7f72 ..l....r

212

17:28:06.645966 2004::1.1023 > 2004::2.login: P 2:25(23) ack 1 win 5760
<nop,nop,timestamp 1146738 27903> (len 55, hlim 63)
0x0000 6000 0000 0037 063f 2004 0000 0000 0000 `....7.?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b15:K.
0x0030 b71b 06e4 8018 1680 6e3e 0000 0101 080an>......
0x0040 0011 7f72 0000 6cff 726f 6f74 0061 646d ...r..l.root.adm
0x0050 696e in

17:28:06.646040 2004::2.login > 2004::1.1023: . [tcp sum ok] 1:1(0) ack 25 win 5712
<nop,nop,timestamp 27903 1146738> (len 32, hlim 64)
0x0000 6000 0000 0020 0640 2004 0000 0000 0000 `......@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 0201 03ff b71b 06e4
0x0030 873a 4b2c 8010 1650 9d79 0000 0101 080a .:K,...P.y......
0x0040 0000 6cff 0011 7f72 ..l....r

17:28:06.667824 2004::2.32803 > 2004::1.auth: S [tcp sum ok] 3060071179:3060071179(0) win
5760 <mss 1440,sackOK,timestamp 27905 0,nop,wscale 0> (len 40, hlim 64)
0x0000 6000 0000 0028 0640 2004 0000 0000 0000 `....(.@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 8023 0071 b664 fb0b#.q.d..
0x0030 0000 0000 a002 1680 528a 0000 0204 05a0R.......
0x0040 0402 080a 0000 6d01 0000 0000 0103 0300m.........

17:28:06.667925 2004::1.auth > 2004::2.32803: R [tcp sum ok] 0:0(0) ack 3060071180 win 0
(len 20, hlim 64)
0x0000 6000 0000 0014 0640 2004 0000 0000 0000 `......@........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 0071 8023 0000 0000q.#....
0x0030 b664 fb0c 5014 0000 3dc0 0000 .d..P...=...

17:28:06.798329 2004::2.login > 2004::1.1023: P [tcp sum ok] 1:2(1) ack 25 win 5712
<nop,nop,timestamp 27918 1146738> (len 33, hlim 64)
0x0000 6000 0000 0021 0640 2004 0000 0000 0000 `....!.@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 0201 03ff b71b 06e4
0x0030 873a 4b2c 8018 1650 9d61 0000 0101 080a .:K,...P.a......
0x0040 0000 6d0e 0011 7f72 00 ..m....r.

17:28:06.798639 2004::1.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 2 win 5760
<nop,nop,timestamp 1146753 27918> (len 32, hlim 63)
0x0000 6000 0000 0020 063f 2004 0000 0000 0000 `......?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b2c:K,
0x0030 b71b 06e5 8010 1680 9d2a 0000 0101 080a*......
0x0040 0011 7f81 0000 6d0e m.

17:28:06.799969 2004::2.login > 2004::1.1023: P [tcp sum ok] 2:12(10) ack 25 win 5712
<nop,nop,timestamp 27918 1146753> (len 42, hlim 64)
0x0000 6000 0000 002a 0640 2004 0000 0000 0000 `....*.@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 0201 03ff b71b 06e5
0x0030 873a 4b2c 8018 1650 b57f 0000 0101 080a .:K,...P........
0x0040 0000 6d0e 0011 7f81 5061 7373 776f 7264 ..m.....Password
0x0050 3a20 :.

17:28:06.800205 2004::1.1023 > 2004::2.login: . [tcp sum ok] 25:25(0) ack 12 win 5760
<nop,nop,timestamp 1146753 27918> (len 32, hlim 63)
0x0000 6000 0000 0020 063f 2004 0000 0000 0000 `......?........
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 03ff 0201 873a 4b2c:K,
0x0030 b71b 06ef 8010 1680 9d20 0000 0101 080a
0x0040 0011 7f81 0000 6d0e m.

213

TRACEROUTE6 – CLIENT

This Ethereal output shows the packet sequence as seen

by the eth0 interface of the client. The importance of this

sequence is that a traceroute6 UDP packet sequence was

successfully sent to 2004::2 and the reply was received by

2003::3. The following command was issued by the client to

produce this result:

traceroute6 2004::2

No. Time Source Destination

Protocol Info

 1 0.000000 2003::3 2004::2 UDP Source port:
32769 Destination port: 33434

Frame 1 (78 bytes on wire, 78 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
User Datagram Protocol, Src Port: 32769 (32769), Dst Port: 33434 (33434)
Data (16 bytes)

0000 00 00 07 b3 00 00 00 01 b1 2f b5 40 80 9f 01 00 /.@....

No. Time Source Destination Protocol Info
 2 0.000565 2003::1 ff02::1:ff00:3 ICMPv6 Neighbor
solicitation

Frame 2 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 33:33:ff:00:00:03
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 3 0.000602 2003::3 2003::1 ICMPv6 Neighbor
advertisement

Frame 3 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 4 0.000714 2003::1 2003::3 ICMPv6 Time exceeded
(In-transit)

Frame 4 (126 bytes on wire, 126 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

214

No. Time Source Destination Protocol Info
 5 0.031311 2003::3 2004::2 UDP Source port:
32769 Destination port: 33434

Frame 5 (78 bytes on wire, 78 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
User Datagram Protocol, Src Port: 32769 (32769), Dst Port: 33434 (33434)
Data (16 bytes)

0000 00 00 07 b3 00 00 00 02 b1 2f b5 40 d0 19 02 00 /.@....

No. Time Source Destination Protocol Info
 6 0.031928 2004::2 2003::3 ICMPv6 Unreachable
(Port unreachable)

Frame 6 (126 bytes on wire, 126 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 7 5.030159 fe80::2c0:a8ff:fe88:887d 2003::1 ICMPv6 Neighbor
solicitation

Frame 7 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 8 5.030330 2003::1 fe80::2c0:a8ff:fe88:887d ICMPv6 Neighbor
advertisement

Frame 8 (78 bytes on wire, 78 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 9 10.030400 fe80::2c0:a8ff:fe88:89f2 fe80::2c0:a8ff:fe88:887d ICMPv6 Neighbor
solicitation

Frame 9 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:89:f2, Dst: 00:c0:a8:88:88:7d
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 10 10.030427 fe80::2c0:a8ff:fe88:887d fe80::2c0:a8ff:fe88:89f2 ICMPv6 Neighbor
advertisement

Frame 10 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:88:7d, Dst: 00:c0:a8:88:89:f2
Internet Protocol Version 6
Internet Control Message Protocol v6

215

TRACEROUTE6 – SERVER

This Ethereal output shows the packet sequence as seen

by the eth0 interface of the server. The importance of this

sequence is that a traceroute6 UDP packet sequence was

successfully forwarded to 2004::2 by the TPE at the address

2004::1. The following command was issued by the client to

produce this result:

traceroute6 2004::2

No. Time Source Destination Protocol Info
 1 0.000000 2004::1 ff02::1:ff00:2 ICMPv6 Neighbor
solicitation

Frame 1 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 33:33:ff:00:00:02
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 2 0.000035 2004::2 2004::1 ICMPv6 Neighbor
advertisement

Frame 2 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 3 0.000166 2004::1 2004::2 UDP Source port:
32769 Destination port: 33434

Frame 3 (78 bytes on wire, 78 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
User Datagram Protocol, Src Port: 32769 (32769), Dst Port: 33434 (33434)
Data (16 bytes)

0000 00 00 07 b3 00 00 00 02 b1 2f b5 40 d0 19 02 00 /.@....

No. Time Source Destination Protocol Info
 4 0.000179 2004::2 2004::1 ICMPv6 Unreachable
(Port unreachable)

Frame 4 (126 bytes on wire, 126 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 5 4.994547 fe80::20d:56ff:feae:a500 2004::1 ICMPv6 Neighbor
solicitation

216

Frame 5 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 6 4.994766 2004::1 fe80::20d:56ff:feae:a500 ICMPv6 Neighbor
advertisement

Frame 6 (78 bytes on wire, 78 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 7 9.994194 fe80::2c0:a8ff:fe88:876c fe80::20d:56ff:feae:a500 ICMPv6 Neighbor
solicitation

Frame 7 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:c0:a8:88:87:6c, Dst: 00:0d:56:ae:a5:00
Internet Protocol Version 6
Internet Control Message Protocol v6

No. Time Source Destination Protocol Info
 8 9.994220 fe80::20d:56ff:feae:a500 fe80::2c0:a8ff:fe88:876c ICMPv6 Neighbor
advertisement

Frame 8 (86 bytes on wire, 86 bytes captured)
Ethernet II, Src: 00:0d:56:ae:a5:00, Dst: 00:c0:a8:88:87:6c
Internet Protocol Version 6
Internet Control Message Protocol v6

TRACEROUTE6 – TPE – ETH0

This tcpdump output shows the packet sequence as seen

by the eth0 interface of the TPE. The importance of this

sequence is that the traceroute6 UDP packets from 2003::3

were forwarded to 2004::2 and the resulting replies were

again forwarded to 2003::3. Note that at this point, the

address of the client is still the true address. The

following command was issued by the client to produce this

result:

traceroute6 2004::2

16:05:30.255708 2003::3.32769 > 2004::2.traceroute: [udp sum ok] udp 16 [hlim 1] (len 24)
0x0000 6000 0000 0018 1101 2003 0000 0000 0000 `...............
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 8001 829a 0018 cd52R
0x0030 0000 07b3 0000 0001 b12f b540 809f 0100/.@....

217

16:05:30.256221 2003::1 > ff02::1:ff00:3: icmp6: neighbor sol: who has 2003::3(src
lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 ff02 0000 0000 0000
0x0020 0000 0001 ff00 0003 8700 0657 0000 0000W....
0x0030 2003 0000 0000 0000 0000 0000 0000 0003
0x0040 0101 00c0 a888 89f2

16:05:30.256305 2003::3 > 2003::1: icmp6: neighbor adv: tgt is 2003::3(SO)(tgt lladdr:
00:c0:a8:88:88:7d) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0003 2003 0000 0000 0000
0x0020 0000 0000 0000 0001 8800 83cd 6000 0000`...
0x0030 2003 0000 0000 0000 0000 0000 0000 0003
0x0040 0201 00c0 a888 887d }

16:05:30.256371 2003::1 > 2003::3: [|icmp6] (len 72, hlim 64)
0x0000 6000 0000 0048 3a40 2003 0000 0000 0000 `....H:@........
0x0010 0000 0000 0000 0001 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0300 4b83 0000 0000K.....
0x0030 6000 0000 0018 1101 2003 0000 0000 0000 `...............
0x0040 0000 0000 0000 0003 2004 0000 0000 0000
0x0050 0000 ..

16:05:30.287017 2003::3.32769 > 2004::2.traceroute: [udp sum ok] udp 16 (len 24, hlim 2)
0x0000 6000 0000 0018 1102 2003 0000 0000 0000 `...............
0x0010 0000 0000 0000 0003 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 8001 829a 0018 7cd7|.
0x0030 0000 07b3 0000 0002 b12f b540 d019 0200/.@....

16:05:30.287582 2004::2 > 2003::3: [|icmp6] (len 72, hlim 63)
0x0000 6000 0000 0048 3a3f 2004 0000 0000 0000 `....H:?........
0x0010 0000 0000 0000 0002 2003 0000 0000 0000
0x0020 0000 0000 0000 0003 0104 7f9e 0000 0000
0x0030 6000 0000 0018 1101 2003 0000 0000 0000 `...............
0x0040 0000 0000 0000 0003 2004 0000 0000 0000
0x0050 0000 ..

16:05:35.285973 fe80::2c0:a8ff:fe88:887d > 2003::1: icmp6: neighbor sol: who has
2003::1(src lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 02c0 a8ff fe88 887d 2003 0000 0000 0000}........
0x0020 0000 0000 0000 0001 8700 d48e 0000 0000
0x0030 2003 0000 0000 0000 0000 0000 0000 0001
0x0040 0101 00c0 a888 887d }

16:05:35.286097 2003::1 > fe80::2c0:a8ff:fe88:887d: icmp6: neighbor adv: tgt is
2003::1(RS) (len 24, hlim 255)
0x0000 6000 0000 0018 3aff 2003 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 fe80 0000 0000 0000
0x0020 02c0 a8ff fe88 887d 8800 465d c000 0000}..F]....
0x0030 2003 0000 0000 0000 0000 0000 0000 0001

16:05:40.286260 fe80::2c0:a8ff:fe88:89f2 > fe80::2c0:a8ff:fe88:887d: icmp6: neighbor sol:
who has fe80::2c0:a8ff:fe88:887d(src lladdr: 00:c0:a8:88:89:f2) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 02c0 a8ff fe88 89f2 fe80 0000 0000 0000
0x0020 02c0 a8ff fe88 887d 8700 af1e 0000 0000}........
0x0030 fe80 0000 0000 0000 02c0 a8ff fe88 887d}
0x0040 0101 00c0 a888 89f2

218

16:05:40.286344 fe80::2c0:a8ff:fe88:887d > fe80::2c0:a8ff:fe88:89f2: icmp6: neighbor adv:
tgt is fe80::2c0:a8ff:fe88:887d(SO)(tgt lladdr: 00:c0:a8:88:88:7d) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 02c0 a8ff fe88 887d fe80 0000 0000 0000}........
0x0020 02c0 a8ff fe88 89f2 8800 4e93 6000 0000N.`...
0x0030 fe80 0000 0000 0000 02c0 a8ff fe88 887d}
0x0040 0201 00c0 a888 887d }

TRACEROUTE6 – TPE – ETH1

This tcpdump output shows the packet sequence as seen

by the eth1 interface of the TPE. The importance of this

sequence is that a traceroute6 UDP sequence from the client

was translated to appear as if it came from 2004::1. The

translated packet was successfully communicated to 2004::2

and the resulting replies were received by 2004::1. Note

that the address of the client is now masked by the NAT

mechanism. The following command was issued by the client

to produce this result:

traceroute6 2004::2

16:05:30.287211 2004::1 > ff02::1:ff00:2: icmp6: neighbor sol: who has 2004::2(src
lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 ff02 0000 0000 0000
0x0020 0000 0001 ff00 0002 8700 08dd 0000 0000
0x0030 2004 0000 0000 0000 0000 0000 0000 0002
0x0040 0101 00c0 a888 876c l

16:05:30.287315 2004::2 > 2004::1: icmp6: neighbor adv: tgt is 2004::2(SO)(tgt lladdr:
00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 8800 b9d6 6000 0000`...
0x0030 2004 0000 0000 0000 0000 0000 0000 0002
0x0040 0201 000d 56ae a500 V...

16:05:30.287382 2004::1.32769 > 2004::2.traceroute: [udp sum ok] udp 16 [hlim 1] (len 24)
0x0000 6000 0000 0018 1101 2004 0000 0000 0000 `...............
0x0010 0000 0000 0000 0001 2004 0000 0000 0000
0x0020 0000 0000 0000 0002 8001 829a 0018 7cd8|.
0x0030 0000 07b3 0000 0002 b12f b540 d019 0200/.@....

16:05:30.287463 2004::2 > 2004::1: [|icmp6] (len 72, hlim 64)
0x0000 6000 0000 0048 3a40 2004 0000 0000 0000 `....H:@........
0x0010 0000 0000 0000 0002 2004 0000 0000 0000
0x0020 0000 0000 0000 0001 0104 4d7e 0000 0000M~....
0x0030 6000 0000 0018 1101 2004 0000 0000 0000 `...............
0x0040 0000 0000 0000 0001 2004 0000 0000 0000
0x0050 0000 ..

219

16:05:35.281776 fe80::20d:56ff:feae:a500 > 2004::1: icmp6: neighbor sol: who has
2004::1(src lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 020d 56ff feae a500 2004 0000 0000 0000 ..V.............
0x0020 0000 0000 0000 0001 8700 40a1 0000 0000@.....
0x0030 2004 0000 0000 0000 0000 0000 0000 0001
0x0040 0101 000d 56ae a500 V...

16:05:35.281924 2004::1 > fe80::20d:56ff:feae:a500: icmp6: neighbor adv: tgt is
2004::1(RS) (len 24, hlim 255)
0x0000 6000 0000 0018 3aff 2004 0000 0000 0000 `.....:.........
0x0010 0000 0000 0000 0001 fe80 0000 0000 0000
0x0020 020d 56ff feae a500 8800 7c65 c000 0000 ..V.......|e....
0x0030 2004 0000 0000 0000 0000 0000 0000 0001

16:05:40.281290 fe80::2c0:a8ff:fe88:876c > fe80::20d:56ff:feae:a500: icmp6: neighbor sol:
who has fe80::20d:56ff:feae:a500(src lladdr: 00:c0:a8:88:87:6c) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 02c0 a8ff fe88 876c fe80 0000 0000 0000l........
0x0020 020d 56ff feae a500 8700 203f 0000 0000 ..V........?....
0x0030 fe80 0000 0000 0000 020d 56ff feae a500V.....
0x0040 0101 00c0 a888 876c l

16:05:40.281387 fe80::20d:56ff:feae:a500 > fe80::2c0:a8ff:fe88:876c: icmp6: neighbor adv:
tgt is fe80::20d:56ff:feae:a500(SO)(tgt lladdr: 00:0d:56:ae:a5:00) (len 32, hlim 255)
0x0000 6000 0000 0020 3aff fe80 0000 0000 0000 `.....:.........
0x0010 020d 56ff feae a500 fe80 0000 0000 0000 ..V.............
0x0020 02c0 a8ff fe88 876c 8800 f337 6000 0000l...7`...
0x0030 fe80 0000 0000 0000 020d 56ff feae a500V.....
0x0040 0201 000d 56ae a500 V...

220

THIS PAGE INTENTIONALLY LEFT BLANK

221

APPENDIX E. USER MANUAL

This appendix contains the man page for ip6tables that

has been modified to include use instructions for this NAT

development for IPv6. The NAT description is based on the

original NAT description in the man page for iptables and

is highlighted with preceeding “***” below.

NAME
ip6tables - IPv6 packet filter administration and NAT.

SYNOPSIS
ip6tables [-t table] -[AD] chain rule-specification [options]
ip6tables [-t table] -I chain [rulenum] rule-specification [options]
ip6tables [-t table] -R chain rulenum rule-specification [options]
ip6tables [-t table] -D chain rulenum [options]
ip6tables [-t table] -[LFZ] [chain] [options]
ip6tables [-t table] -N chain
ip6tables [-t table] -X [chain]
ip6tables [-t table] -P chain target [options]
ip6tables [-t table] -E old-chain-name new-chain-name

DESCRIPTION
Ip6tables is used to set up, maintain, and inspect the tables of IPv6
packet filter rules in the Linux kernel. Several different tables may
be defined. Each table contains a number of built-in chains and may
also contain user-defined chains.
Each chain is a list of rules which can match a set of packets. Each
rule specifies what to do with a packet that matches. This is called a
`target', which may be a jump to a user-defined chain in the same
table.

TARGETS
A firewall rule specifies criteria for a packet, and a target. If the
packet does not match, the next rule in the chain is the examined; if
it does match, then the next rule is specified by the value of the
target, which can be the name of a user-defined chain or one of the
special values ACCEPT, DROP, QUEUE, or RETURN.
ACCEPT means to let the packet through. DROP means to drop the packet
on the floor. QUEUE means to pass the packet to userspace (if supported
by the kernel). RETURN means stop traversing this chain and resume at
the next rule in the previous (calling) chain. If the end of a built-in
chain is reached or a rule in a built-in chain with target RETURN is
matched, the target specified by the chain policy determines the fate
of the packet.

TABLES
There are currently two independent tables (which tables are present at
any time depends on the kernel configuration options and which modules
are present), as nat table has not been implemented yet.

222

-t, --table table
This option specifies the packet matching table which the command
should operate on. If the kernel is configured with automatic module
loading, an attempt will be made to load the appropriate module for
that table if it is not already there.
The tables are as follows:

filter:
This is the default table (if no -t option is passed). It contains the
built-in chains INPUT (for packets coming into the box itself), FORWARD
(for packets being routed through the box), and OUTPUT (for locally-
generated packets).

*** nat:
This table is consulted when a packet that creates a new connection is
encountered. It consists of three built-ins: PREROUTING (for altering
packets as soon as they come in), OUTPUT (for altering locally-
generated packets before routing), and POSTROUTING (for altering
packets as they are about to go out.

mangle:
This table is used for specialized packet alteration. Until kernel
2.4.17 it had two built-in chains: PREROUTING (for altering incoming
packets before routing) and OUTPUT (for altering locally-generated
packets before routing). Since kernel 2.4.18, three other built-in
chains are also supported: INPUT (for packets coming into the box
itself), FORWARD (for altering packets being routed through the box),
and POSTROUTING (for altering packets as they are about to go out).

OPTIONS
The options that are recognized by ip6tables can be divided into
several different groups.

COMMANDS
These options specify the specific action to perform. Only one of them
can be specified on the command line unless otherwise specified below.
For all the long versions of the command and option names, you need to
use only enough letters to ensure that ip6tables can differentiate it
from all other options.

-A, --append chain rule-specification
Append one or more rules to the end of the selected chain. When the
source and/or destination names resolve to more than one address, a
rule will be added for each possible address combination.

-D, --delete chain rule-specification
-D, --delete chain rulenum
Delete one or more rules from the selected chain. There are two
versions of this command: the rule can be specified as a number in the
chain (starting at 1 for the first rule) or a rule to match.

-I, --insert
Insert one or more rules in the selected chain as the given rule
number. So, if the rule number is 1, the rule or rules are inserted at
the head of the chain. This is also the default if no rule number is
specified.

223

-R, --replace chain rulenum rule-specification
Replace a rule in the selected chain. If the source and/or destination
names resolve to multiple addresses, the command will fail. Rules are
numbered starting at 1.

-L, --list [chain]
List all rules in the selected chain. If no chain is selected, all
chains are listed. As every other iptables command, it applies to the
specified table (filter is the default), so mangle rules get listed by
 ip6tables -t mangle -n -L
Please note that it is often used with the -n option, in order to avoid
long reverse DNS lookups. It is legal to specify the -Z (zero) option
as well, in which case the chain(s) will be atomically listed and
zeroed. The exact output is affected by the other arguments given. The
exact rules are suppressed until you use
 ip6tables -L –v

-F, --flush [chain]
Flush the selected chain (all the chains in the table if none is
given). This is equivalent to deleting all the rules one by one.

-Z, --zero [chain]
Zero the packet and byte counters in all chains. It is legal to specify
the -L, --list (list) option as well, to see the counters immediately
before they are cleared. (See above.)

-N, --new-chain chain
Create a new user-defined chain by the given name. There must be no
target of that name already.

-X, --delete-chain [chain]
Delete the optional user-defined chain specified. There must be no
references to the chain. If there are, you must delete or replace the
referring rules before the chain can be deleted. If no argument is
given, it will attempt to delete every non-builtin chain in the table.

-P, --policy chain target
Set the policy for the chain to the given target. See the section
TARGETS for the legal targets. Only built-in (non-user-defined) chains
can have policies, and neither built-in nor user-defined chains can be
policy targets.

-E, --rename-chain old-chain new-chain
Rename the user specified chain to the user supplied name. This is
cosmetic, and has no effect on the structure of the table.
-h
Help. Give a (currently very brief) description of the command syntax.

PARAMETERS
The following parameters make up a rule specification (as used in the
add, delete, insert, replace and append commands).

-p, --protocol [!] protocol
The protocol of the rule or of the packet to check. The specified
protocol can be one of tcp, udp, ipv6-icmp|icmpv6, or all, or it can be
a numeric value, representing one of these protocols or a different
one. A protocol name from /etc/protocols is also allowed. A "!"

224

argument before the protocol inverts the test. The number zero is
equivalent to all. Protocol all will match with all protocols and is
taken as default when this option is omitted.

-s, --source [!] address[/mask]
Source specification. Address can be either a hostname (please note
that specifying any name to be resolved with a remote query such as DNS
is a really bad idea), a network IPv6 address (with /mask), or a plain
IPv6 address. (the network name isn't supported now). The mask can be
either a network mask or a plain number, specifying the number of 1's
at the left side of the network mask. Thus, a mask of 64 is equivalent
to ffff:ffff:ffff:ffff:0000:0000:0000:0000. A "!" argument before the
address specification inverts the sense of the address. The flag --src
is an alias for this option.

-d, --destination [!] address[/mask]
Destination specification. See the description of the -s (source) flag
for a detailed description of the syntax. The flag --dst is an alias
for this option.

-j, --jump target
This specifies the target of the rule; i.e., what to do if the packet
matches it. The target can be a user-defined chain (other than the one
this rule is in), one of the special builtin targets which decide the
fate of the packet immediately, or an extension (see EXTENSIONS below).
If this option is omitted in a rule, then matching the rule will have
no effect on the packet's fate, but the counters on the rule will be
incremented.

-i, --in-interface [!] name
Name of an interface via which a packet is going to be received (only
for packets entering the INPUT, FORWARD and PREROUTING chains). When
the "!" argument is used before the interface name, the sense is
inverted. If the interface name ends in a "+", then any interface which
begins with this name will match. If this option is omitted, any
interface name will match.

-o, --out-interface [!] name
Name of an interface via which a packet is going to be sent (for
packets entering the FORWARD and OUTPUT chains). When the "!" argument
is used before the interface name, the sense is inverted. If the
interface name ends in a "+", then any interface which begins with this
name will match. If this option is omitted, any interface name will
match.

-c, --set-counters PKTS BYTES This enables the administrator to
initialize the packet and byte counters of a rule (during INSERT,
APPEND, REPLACE operations).

OTHER OPTIONS
The following additional options can be specified:

-v, --verbose
Verbose output. This option makes the list command show the interface
name, the rule options (if any), and the TOS masks. The packet and byte
counters are also listed, with the suffix 'K', 'M' or 'G' for 1000,
1,000,000 and 1,000,000,000 multipliers respectively (but see the -x

225

flag to change this). For appending, insertion, deletion and
replacement, this causes detailed information on the rule or rules to
be printed.

-n, --numeric
Numeric output. IP addresses and port numbers will be printed in
numeric format. By default, the program will try to display them as
host names, network names, or services (whenever applicable).

-x, --exact
Expand numbers. Display the exact value of the packet and byte
counters, instead of only the rounded number in K's (multiples of 1000)
M's (multiples of 1000K) or G's (multiples of 1000M). This option is
only relevant for the -L command.

--line-numbers
When listing rules, add line numbers to the beginning of each rule,
corresponding to that rule's position in the chain.

--modprobe=command
When adding or inserting rules into a chain, use command to load any
necessary modules (targets, match extensions, etc).

MATCH EXTENSIONS
ip6tables can use extended packet matching modules. These are loaded in
two ways: implicitly, when -p or --protocol is specified, or with the -
m or --match options, followed by the matching module name; after
these, various extra command line options become available, depending
on the specific module. You can specify multiple extended match modules
in one line, and you can use the -h or --help options after the module
has been specified to receive help specific to that module.
The following are included in the base package, and most of these can
be preceded by a ! to invert the sense of the match.
tcp
These extensions are loaded if `--protocol tcp' is specified. It
provides the following options:

--source-port [!] port[:port]
Source port or port range specification. This can either be a service
name or a port number. An inclusive range can also be specified, using
the format port:port. If the first port is omitted, "0" is assumed; if
the last is omitted, "65535" is assumed. If the second port greater
then the first they will be swapped. The flag --sport is a convenient
alias for this option.

--destination-port [!] port[:port]
Destination port or port range specification. The flag --dport is a
convenient alias for this option.

--tcp-flags [!] mask comp
Match when the TCP flags are as specified. The first argument is the
flags which we should examine, written as a comma-separated list, and
the second argument is a comma-separated list of flags which must be
set. Flags are: SYN ACK FIN RST URG PSH ALL NONE. Hence the command
 ip6tables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
will only match packets with the SYN flag set, and the ACK, FIN and RST
flags unset.

226

[!] --syn
Only match TCP packets with the SYN bit set and the ACK and RST bits
cleared. Such packets are used to request TCP connection initiation;
for example, blocking such packets coming in an interface will prevent
incoming TCP connections, but outgoing TCP connections will be
unaffected. It is equivalent to --tcp-flags SYN,RST,ACK SYN. If the "!"
flag precedes the "--syn", the sense of the option is inverted.

--tcp-option [!] number
Match if TCP option set.

udp
These extensions are loaded if `--protocol udp' is specified. It
provides the following options:

--source-port [!] port[:port]
Source port or port range specification. See the description of the --
source-port option of the TCP extension for details.

--destination-port [!] port[:port]
Destination port or port range specification. See the description of
the --destination-port option of the TCP extension for details.

ipv6-icmp
This extension is loaded if `--protocol ipv6-icmp' or `--protocol
icmpv6' is specified. It provides the following option:

--icmpv6-type [!] typename
This allows specification of the ICMP type, which can be a numeric
IPv6-ICMP type, or one of the IPv6-ICMP type names shown by the command
 ip6tables -p ipv6-icmp -h

mac
--mac-source [!] address
Match source MAC address. It must be of the form XX:XX:XX:XX:XX:XX.
Note that this only makes sense for packets coming from an Ethernet
device and entering the PREROUTING, FORWARD or INPUT chains.

limit
This module matches at a limited rate using a token bucket filter. A
rule using this extension will match until this limit is reached
(unless the `!' flag is used). It can be used in combination with the
LOG target to give limited logging, for example.

--limit rate
Maximum average matching rate: specified as a number, with an optional
`/second', `/minute', `/hour', or `/day' suffix; the default is 3/hour.
--limit-burst number
Maximum initial number of packets to match: this number gets recharged
by one every time the limit specified above is not reached, up to this
number; the default is 5.

multiport
This module matches a set of source or destination ports. Up to 15
ports can be specified. It can only be used in conjunction with -p tcp
or -p udp.
--source-ports port[,port[,port...]]

227

Match if the source port is one of the given ports. The flag --sports
is a convenient alias for this option.
--destination-ports port[,port[,port...]]
Match if the destination port is one of the given ports. The flag --
dports is a convenient alias for this option.
--ports port[,port[,port...]]
Match if the both the source and destination ports are equal to each
other and to one of the given ports.

mark
This module matches the netfilter mark field associated with a packet
(which can be set using the MARK target below).
--mark value[/mask]
Matches packets with the given unsigned mark value (if a mask is
specified, this is logically ANDed with the mask before the
comparison).

owner
This module attempts to match various characteristics of the packet
creator, for locally-generated packets. It is only valid in the OUTPUT
chain, and even this some packets (such as ICMP ping responses) may
have no owner, and hence never match. This is regarded as experimental.
--uid-owner userid
Matches if the packet was created by a process with the given effective
user id.
--gid-owner groupid
Matches if the packet was created by a process with the given effective
group id.
--pid-owner processid
Matches if the packet was created by a process with the given process
id.
--sid-owner sessionid
Matches if the packet was created by a process in the given session
group.

TARGET EXTENSIONS
ip6tables can use extended target modules: the following are included
in the standard distribution.
LOG
Turn on kernel logging of matching packets. When this option is set for
a rule, the Linux kernel will print some information on all matching
packets (like most IPv6 IPv6-header fields) via the kernel log (where
it can be read with dmesg or syslogd(8)). This is a "non-terminating
target", i.e. rule traversal continues at the next rule. So if you want
to LOG the packets you refuse, use two separate rules with the same
matching criteria, first using target LOG then DROP (or REJECT).
--log-level level
Level of logging (numeric or see syslog.conf(5)).
--log-prefix prefix
Prefix log messages with the specified prefix; up to 29 letters long,
and useful for distinguishing messages in the logs.
--log-tcp-sequence
Log TCP sequence numbers. This is a security risk if the log is
readable by users.
--log-tcp-options
Log options from the TCP packet header.
--log-ip-options

228

Log options from the IPv6 packet header.

MARK
This is used to set the netfilter mark value associated with the
packet. It is only valid in the mangle table.
--set-mark mark

REJECT
This is used to send back an error packet in response to the matched
packet: otherwise it is equivalent to DROP so it is a terminating
TARGET, ending rule traversal. This target is only valid in the INPUT,
FORWARD and OUTPUT chains, and user-defined chains which are only
called from those chains. The following option controls the nature of
the error packet returned:
--reject-with type
The type given can be
 icmp6-no-route
 no-route
 icmp6-adm-prohibited
 adm-prohibited
 icmp6-addr-unreachable
 addr-unreach
 icmp6-port-unreachable
 port-unreach
which return the appropriate IPv6-ICMP error message (port-unreach is
the default). Finally, the option tcp-reset can be used on rules which
only match the TCP protocol: this causes a TCP RST packet to be sent
back. This is mainly useful for blocking ident (113/tcp) probes which
frequently occur when sending mail to broken mail hosts (which won't
accept your mail otherwise).

*** SNAT
This target is only valid in the nat table, in the
POSTROUTING chain. It specifies that the source address of the packet
should be modified (and all future packets in this connection will also
be mangled), and rules should cease being examined. It takes one type
of option:

 --to-source ipaddr

which can specify a single new source IP address.

DIAGNOSTICS
Various error messages are printed to standard error. The exit code is
0 for correct functioning. Errors which appear to be caused by invalid
or abused command line parameters cause an exit code of 2, and other
errors cause an exit code of 1.
BUGS
Bugs? What's this? ;-) Well... the counters are not reliable on
sparc64.

COMPATIBILITY WITH IPCHAINS
This ip6tables is very similar to ipchains by Rusty Russell. The main
difference is that the chains INPUT and OUTPUT are only traversed for
packets coming into the local host and originating from the local host

229

respectively. Hence every packet only passes through one of the three
chains (except loopback traffic, which involves both INPUT and OUTPUT
chains); previously a forwarded packet would pass through all three.
The other main difference is that -i refers to the input interface; -o
refers to the output interface, and both are available for packets
entering the FORWARD chain. There are several other changes in
ip6tables.

SEE ALSO
ip6tables-save(8), ip6tables-restore(8), iptables(8), iptables-save(8),
iptables-restore(8). The packet-filtering-HOWTO details iptables usage
for packet filtering, the NAT-HOWTO details NAT, the netfilter-
extensions-HOWTO details the extensions that are not in the standard
distribution, and the netfilter-hacking-HOWTO details the netfilter
internals.
See http://www.netfilter.org/.
AUTHORS
Rusty Russell wrote iptables, in early consultation with Michael
Neuling.
Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic
packet selection framework in iptables, then wrote the mangle table,
the owner match, the mark stuff, and ran around doing cool stuff
everywhere.
James Morris wrote the TOS target, and tos match.
Jozsef Kadlecsik wrote the REJECT target.
Harald Welte wrote the ULOG target, TTL match+target and libipulog.
The Netfilter Core Team is: Marc Boucher, Martin Josefsson, Jozsef
Kadlecsik, James Morris, Harald Welte and Rusty Russell.
ip6tables man page created by Andras Kis-Szabo, based on iptables man
page written by Herve Eychenne
<rv@wallfire.org>.
*** ip6tables man page was modified by Trevor J. Baumgartner and
Matthew D. W. Phillips to reflect added NAT functionality.

230

THIS PAGE INTENTIONALLY LEFT BLANK

231

APPENDIX F. COMMON CRITERIA

This appendix contains a summary of the requirements

necessary for an EAL5 certification. A listing of the

requirements can be found in the following table.

Table 4. EAL5 Requirements

1. CONFIGURATION MANAGEMENT AUTOMATION

1.1 Partial CM Automation (ACM_AUT.1)

This component requires that the developer use and

provide a CM plan. In addition, the CM system must provide

an automated method through which only authorized changes

232

are made to the TOE. The CM must also support the

generation of the TOE. Finally, the CM plan must describe

the automated tools used in the CM system and how the tools

are used. [CC]

2. CONFIGURATION MANAGEMENT CAPABILITIES

2.1 Generation Support and Acceptance Procedures
(ACM_CAP.4)

This component states that the developer must provide

a reference for the TOE, use a CM system and provide CM

documentation. In addition, the reference for the TOE must

be unique to each version of the TOE and be labeled as

such. The CM documentation must also include a

configuration list, a CM plan and an acceptance plan.

Within the configuration list, all configuration items that

compromise the TOE must be uniquely identified and

described. The CM system must also provide measures to

ensure that only authorized changes are made to the

configuration items, as well as support the generation of

the TOE. [CC]

3. CONFIGURATION MANAGEMENT SCOPE

3.1 Development Tools CM Coverage (ACM_SCP.3)

This component requires the developer to provide a

list of configuration management items for the TOE. This

list must include implementation representation, security

flaws, development tools and evaluation evidence required

by the assurance components in the ST. [CC]

4. DELIVERY

4.1 Detection of Modification (ADO_DEL.2)

The developer must document and use procedures for

delivery of the TOE or parts of it to the user. The

documentation must describe all the procedures necessary to

maintain security when distributing versions of the TOE to

233

a user’s site. The documentation must also describe how the

various procedures and technical measures provide for the

detection of modifications, or any discrepancy between the

developer’s master copy and the version received at the

user’s site. [CC]

5. INSTALLATION, GENERATION AND START-UP

5.1 Installation, Generation, and Start-up Procedures
(ADO_IGS.1)

This component requires the developer to document the

procedures necessary for the secure installation,

generation, and start-up of the TOE. [CC]

6. FUNCTIONAL SPECIFICATION

6.1 Semiformal Functional Specification (ADV_FSP.3)

This component states that the developer must provide

a functional specification. The specification should

describe the TSF using a semiformal style, supported by

informal, explanatory text where appropriate. This

specification must be internally consistent as well as

completely represent the TSF. [CC]

7. HIGH-LEVEL DESIGN

7.1 Semiformal High-Level Design (ADV_HLD.3)

The high-level design requirements for developer

action states that the developer must provide the high-

level design of the TSF. This design should be semiformal

and internally consistent. The design must also describe

the structure of the TSF in terms of subsystems and the

secure functionality provided within each subsystem. The

high-level design should, in addition, identify any

hardware, firmware or software required by the TSF and any

underlying protection mechanisms. [CC]

234

8. IMPLEMENTATION REPRESENTATION

8.1 Implementation of the TSF (ADV_IMP.2)

The primary requirement for this component is for the

developer to provide the implementation representation for

the entire TSF. This representation must unambiguously

define the TSF so that one would be able to recreate the

implementation without making any design decisions. The

representation should be internally consistent and describe

the relationships between all portions of the

implementation. [CC]

9. TSF INTERNALS

9.1 Modularity (ADV_INT.1)

This component states that the developer must design

and structure the TSF in a modular fashion that avoids

unnecessary interactions between the modules of the design.

The developer must also provide an architectural

description. The description must identify the modules of

the TSF, describe the purpose of each module and describe

how the TSF design provides for largely independent modules

that avoid unnecessary interactions. [CC]

10. LOW-LEVEL DESIGN

10.1 Descriptive Low-Level Design (ADV_LLD.1)

This component requires the developer to provide an

informal, low-level design of the TSF. This design must be

internally consistent, describe the TSF in terms of

modules, and describe the purpose of each module and its

relationship between other modules. This design must

identify all interfaces to the modules of the TSF and which

modules are externally visible. The design must also

describe the purpose and method of use for all modules

within the TSF. [CC]

235

11. REPRESENTATION CORRESPONDENCE

11.1 Semiformal Correspondence Demonstration
(ADV_RCR.2)

This requirement states that the developer must

provide an analysis of correspondence between all adjacent

pairs of TSF representations that are provided. These

representations must demonstrate that all relevant security

functionality is correctly and completely refined in the

less abstract TSF representation. Also, a demonstration of

correspondence between semiformal representations is

required. [CC]

12. SECURITY POLICY MODELING

12.1 Formal TOE Security Policy Model (ADV_SPM.3)

The primary requirement for this component is for the

developer to provide a formal TSP model. The developer must

demonstrate correspondence between the functional

specification and the TSP model. The TSP model must

describe the rules and characteristics of all policies of

the TSP that can be modeled. It must also include a

demonstration of consistency and completeness with regards

to all policies of the TSP. [CC]

13. ADMINISTRATOR GUIDANCE

13.1 Administrator Guidance (AGD_ADM.1)

This component requires the developer to provide

administrator guidance addressed to system administrative

personnel. The guidance should describe the administrative

functions of the TOE and must be consistent with all other

documentation supplied for evaluation. This guidance must

also describe how to administer the TOE in a secure manner.

[CC]

236

14. USER GUIDANCE

14.1 User Guidance (AGD_USR.1)

The primary requirement for this component is that

user guidance be provided. This guidance must describe the

functions and interfaces available to the non-

administrative users of the TOE. It must also describe the

use of user-accessible security functions provided by the

TOE as well as any warnings that might occur. In addition

the guidance must be consistent with all other

documentation supplied for evaluation. [CC]

15. DEVELOPMENT SECURITY

15.1 Identification of Security Measures (ALC_DVS.1)

This component requires the developer to produce

development security documentation. This documentation must

describe all the physical, procedural, personnel and other

security measures necessary to protect the confidentiality

and integrity of the TOE design and implementation in its

development environment. In addition, the documentation

must also provide evidence that these security measures are

followed during the development and maintenance of the TOE.

[CC]

16. LIFE CYCLE DEFINITION

16.1 Standardized Life-Cycle Model (ALC_LCD.2)

The developer must establish and use a standardized

life-cycle model to be used in the development and

maintenance of the TOE. This life-cycle model

implementation must also have corresponding documentation.

This model must provide for the necessary control over the

development and maintenance of the TOE. The life-cycle

definition documentation must explain why the model was

chosen and how it was used during development. [CC]

237

17. TOOLS AND TECHNIQUES

17.1 Compliance with Implementation Standards
(ALC_TAT.2)

This component states that the developer must identify

the development tools being used for the TOE. In addition,

the implementation-dependent options of the development

tools must be documented. Also, the development tools used

in the implementation must be well defined. [CC]

18. COVERAGE

18.1 Analysis of Coverage (ATE_COV.2)

This component requires the developer to provide an

analysis of the test coverage. The analysis must

demonstrate the correspondence between the tests identified

in the test documentation and the TSF as described in the

functional specification. Also, the tests identified in the

test documentation must be complete. [CC]

19. DEPTH

19.1 Testing: Low-Level Design (ATE_COV.2)

This component requires the developer to provide an

analysis of the depth of testing. This analysis must

demonstrate that the tests identified in the test

documentation are sufficient to demonstrate that the TSF

operates in accordance with its high and low level design.

[CC]

20. FUNCTIONAL TESTS

20.1 Functional Testing (ATE_FUN.1)

This component requires the developer to test the TSF

and document the results and provide test documentation.

The documentation should consist of test plans, test

procedure descriptions and actual test results. The testing

procedure descriptions must identify the tests to be

performed and describe the testing scenarios for testing

238

each security function. The test results should demonstrate

that each tested security function behaved as expected.

[CC]

21. INDEPENDENT TESTING

21.1 Independent Testing - Sample (ATE_IND.2)

This component requires the developer to provide a

suitable TOE for testing. The developer must also provide

an equivalent set of resources to those that were used in

the developer’s functional testing of the TSF. [CC]

22. COVERT CHANNEL ANALYSIS

22.2 Covert Channel Analysis (AVA_CCA.1)

This component requires the developer to conduct a

search for covert channels for each information flow

control policy and provide analysis documentation. The

documentation must identify covert channels and estimate

their capacity. It must also describe the procedures used

for determining the existence of covert channels. The

documentation must also describe all assumptions made

during the analysis as well as the method used for

estimating channel capacity. It must also describe the

worst case exploitation scenario for each identified covert

channel. [CC]

23. MISUSE

23.3 Validation of Analysis (AVA_MSU.2)

This component requires the developer to provide

guidance documentation as well as a document of the

analysis of it. The guidance document must identify all

possible modes of operation of the TOE, their consequences

and implications for maintaining secure operation. The

guidance document must list all assumptions about the

intended environment as well as requirements for external

security measures. [CC]

239

24. STRENGTH OF TOE SECURITY FUNCTIONS

24.1 Strength of TOE Security Function Evaluation
(AVA_SOF.1)

This component requires the developer to perform a

strength of TOE security function analysis for each

mechanism identified in the ST as having a strength of TOE

security function claim. Also, for each mechanism with a

strength of TOE security function claim, the strength of

the TOE security function analysis must show that it meets

or exceeds the minimum strength level and the specific

strength of function metric defined in the PP/ST. [CC]

25. VULNERABILITY ANALYSIS

25.1 Moderately Resistant (AVA_VLA.3)

This component requires the developer to perform a

vulnerability analysis and provide documentation. This

documentation must describe the analysis of the TOE

deliverables performed to search for ways in which a user

can violate the TSP. It must also describe the disposition

of the identified vulnerabilities. Also, it must show that

these vulnerabilities cannot be exploited in the specified

environment for the TOE. In addition, the documentation

must justify that the TOE is resistant to obvious

penetration attacks. [CC]

240

THIS PAGE INTENTIONALLY LEFT BLANK

241

APPENDIX G. INSTALLATION GUIDE

This document is intended to guide the installation

and setup of the modified 2.6.5 Linux kernel that supports

NAT for IPv6. It also describes procedures for setting up

the networking configurations for the TPE in order to run

NAT. Due to the myriad of situations that may be

encountered, this document only describes the basic steps

needed and does not cover extenuating circumstances brought

about by other machines.

1. Install Red Hat 9.0

2. Boot into the Red Hat 9.0 kernel

3. Verify network connectivity through an IPv4 ping

4. Insert NAT kernel CD and, if necessary, mount the

CD

5. Copy the main tar file to /home:
cp /mnt/cdrom/IPV6NAT.COMPLETE.tar /home

6. Remove the NAT kernel CD and, if necessary,
unmount the CD

7. Change directory to the /home directory and then
unpack the main tar archive:
cd /home
tar xfv IPV6NAT.COMPLETE.tar

8. This should produce three tar archives:

- IPV6NAT.IPTABLES.tar ; contains the iptables
user space code
- IPV6NAT.MODUTILS.tar ; contains modutils
necessary to compile 2.6 kernel.

 - IPV6NAT.KERNEL.tar ; contains the main kernel

9. Unpack the kernel archive:
tar xfv IPV6NAT.KERNEL.tar

242

The main kernel directory is:
/home/usagi/kernel/linux26/ assuming you unpacked
the archives in the /home directory.

*If installation has been done previously, skip steps
10 through 19.

10. Unpack the modutils archive:
tar xfv IPV6NAT.MODUTILS.tar

11. Change directory to the modutils folder:
cd module-init-tools-0.9.15-pre4

12. Now modutils will be installed. For a more
detailed installation guide, read the INSTALL file in
the modutils main directory. The next step will be to
configure the package for installation:
./configure -–prefix=/
make moveold

13. Next run make clean and make:
make clean
make

14. Then run make install:
make install
./generate-modprobe.conf/etc/modprobe.conf

15. Change directory back to /home:
cd .. or cd /home

16. Unpack the iptables tar package:
tar xfv IPV6NAT.IPTABLES.tar

17. Change directory into the iptables folder:
cd iptables-1.2.9rc1

18. Now iptables will be installed. For a more
detailed installation guide, read the INSTALL file in
the modutils main directory. Run make, telling it
where the kernel is located:
make KERNEL_DIR=/home/usagi/kernel/linux26/

19. Run make install using the same information:
make install KERNEL_DIR=/home/usagi/kernel/linux26

20. Change directory to the kernel directory:

243

cd /home/usagi/kernel/linux26

21. At this point the kernel needs configuration. If
installation done on a machine other than the TPE, the
kernel will require reconfiguration. In the current
directory is the kernel configuration used on the
development machine. The configuration is named
.config. To configure the kernel using this
configuration run:
make oldconfig

This should answer all of the kernel option
questions.

22. To help generate the .config file on a different
system:
cd /usr/src/linux-2.4.20.8
make mrproper
make oldconfig

Answer all of the questions. It is highly
recommended that the user have a solid knowledge
of kernel configuration before starting.
Improper configuration can lead to serious
problems.

cd /home/usagi/kernel/linux26/
make mrproper
make oldconfig

23. For platform specific questions, refer to the
Linux 2.4.20.8 .config file. For configuration
parameter that exist in both the Linux 2.4.20.8 and
the Linux 2.6.5 .config files, use the Linux 2.6.5
.config file for reference. For configuration
parameters that do not exist in Linux 2.4, use the
Linux 2.6.5 .config file for reference. When in doubt,
deny experimental modules and unknown drivers.

24. This step is only required if the kernel options
are reconfigured and may be skipped if this is a TPE
installation. The following is a list of kernel
configuration options that must be enabled for NAT to
function properly:
 Networking Support (NET)
 Packet Socket (PACKET)
 TCP/IP Networking (INET)

IP6 tables support (IP6_NF_IPTABLES)

244

limit match support (IP6_NF_MATCH_LIMIT)
MAC address match support (IP6_NF_MATCH_MAC)
Routing header match support (IP6_NF_MATCH_RT)
Hop-by-hop and Dst opts header match support

(IP6_NF_MATCH_OPTS)
Fragmentation header match support

(IP6_NF_MATCH_FRAG)
HL match support (IP6_ NF_MATCH_HL)
Multiple port match support

(IP6_NF_MATCH_MULTIPORT)
Owner match support (IP6_NF_MATCH_OWNER)
netfilter MARK match support (IP6_NF_MATCH_MARK)
IPv6 Extension Headers Match

(IP6_NF_MATCH_IPV6HEADER)
AH/ESP match support (IP6_NF_MATCH_AHESP)
Packet Length match support (IP6_NF_MATCH_LENGTH)
EUI64 address check (IP6_NF_MATCH_EUI64)
Connection tracking (IP6_NF_CONNTRACK)
Connection state match support

(IP6_NF_MATCH_STATE)
Packet filtering (IP6_NF_FILTER)
LOG target support (IP6_NF_TARGET_LOG)
REJECT target support (IP6_NF_TARGET_LOG)
Packet mangling (IP6_NF_MANGLE)
HL target support (IP6_NF_TARGET_HL)
MARK target support (IP6_NF_TARGET_MARK)
IP6 range match support (IP6_NF_MATCH_IPRANGE)
Full NAT (IP6_NF_NAT)
NETMAP target support (IP6_NF_TARGET_NETMAP)
SAME target support (IP6_NF_TARGET_SAME)
NAT of local connections (IP6_NF_NAT_LOCAL)

 Network Packet Filtering (NETFILTER)
 Connection Tracking (IP_NF_CONNTRACK)
 IP Tables Support (IP_NF_IPTABLES)
 Limit match support (IP_NF_MATCH_IPRANGE)
 MAC address match support (IP_NF_MATCH_MAC)
 Packet type match support (IP_NF_MATCH_PKTTYPE)
 Netfilter mark match support (IP_NF_MATCH_MARK)
 Multiple port match support

(IP_NF_MATCH MULTIPORT)
 TOS match support (IP_NF_MATCH TOS)
 Recent match support (IP_NF_MATCH RECENT)
 Length match support (IP_NF_MATCH LENGTH)
 TTL match support (IP_NF_MATCH_TTL)

Connection state match support
(IP_NF_MATCH_STATE)

 Connection tracking match support

245

(IP_NFMATCH_CONNTRACK)
Owner match support (IP_ NF_MATCH_OWNER)

 Packet filtering (IP_NF_FILTER)
 Full NAT (IP_NF_NAT)
 MASQUERADE target support

(IP_NF_TARGET_MASQUERADE)
 REDIRECT target support (IP_NF_TARGET REDIRECT)
 NETMAP target support (IP_NF_TARGET_NETMAP)
 SAME target support (IP_NF_TARGET_SAME)
 NAT of local connections (IP_NF_NAT_LOCAL)

Packet mangling (IP_NF_MANGLE)

25. Next step is to clear out already compiled object
files:
make clean

26. To add a specific tag to this compiled version of
the kernel, bring up the Makefile located in the
directory you are in and change the name from “IPv6-
NAT” to whatever tag you like. “IPv6-NAT” is the
default tag.

27. Compile the kernel:
make bzImage

28. Make the modules:
make modules

29. Install the modules:
make modules_install

30. Run install:
make install

31. Bring up the grub.conf file and edit it. Change
directory to /boot/grub and then bring up grub.conf in
the editor of your choice.

32. Edit the line just below your kernel label that
says root=LABEL=/. Change root=LABEL=/ to say
root=/dev/hda2.
*NOTE: this is a configuration issue that may not be
present on other machines and the hda2 label can
change from machine to machine. This change
specifically sets up the kernel for the TPE.

246

33. Reboot and select the NAT kernel from the grub
list.

34. Check network connectivity through an IPv4 ping

/* NAT SETUP */

35. Once logged in, bring up a terminal window

36. Issuing the following commands will setup both
network interfaces. The global addresses may be
changed, but the subnet of the internal computers must
be the same.
ifconfig eth0 inet6 add 2003::1/64
ifconfig eth1 inet6 add 2004::1/64

37. Setup the user-space ip6tables:
ip6tables -t nat -A POSTROUTING -o eth1 -j SNAT --
to-source 2004::1

This assumes the same topography as the IPv6 testbed.

38. Turn on forwarding:
sysctl –w net.ipv6.conf.all.forwarding=1

39. Verify IPv6 network connectivity through an IPv6
ping

40. NAT is now ready and functioning. All messages
sent from the Client will be translated before being
forwarded to the server, so that the server only sees
the translated address.

247

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. George Bieber
OSD
Washington, DC

4. RADM Joseph Burns
 Fort George Meade, MD

5. Deborah Cooper

DC Associates, LLC
Roslyn, VA

6. CDR Daniel L. Currie
PMW 161
San Diego, CA

7. LCDR James Downey
NAVSEA
Washington, DC

8. Richard Hale

DISA
Falls Church, VA

9. LCDR Scott Heller
SPAWAR
San Diego, CA

10. Wiley Jones

OSD
Washington, DC

11. Russell Jones
N641
Arlington, VA

248

12. David Ladd
Microsoft Corporation
Redmond, WA

13. Dr. Carl Landwehr
National Science Foundation
Arlington, VA

14. Steve LaFountain

NSA
Fort Meade, MD

15. Dr. Greg Larson
IDA
Alexandria, VA

16. Ray A. Letteer

Head, Information Assurance, HQMC C4 Directorate
Washington, DC

17. Penny Lehtola
NSA
Fort Meade, MD

18. Ernest Lucier

Federal Aviation Administration
Washington, DC

19. CAPT Sheila McCoy
Headquarters U.S. Navy
Arlington, VA

20. Dr. Ernest McDuffie

National Science Foundation
Arlington, VA

21. Dr. Vic Maconachy
NSA
Fort Meade, MD

22. Doug Maughan

Department of Homeland Security
Washington, DC

23. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

249

24. John Milder

SPAWAR
Charleston, SC

25. Marshall Potter
Federal Aviation Administration
Washington, DC

26. Dr. Roger R. Schell

Aesec
Pacific Grove, CA

27. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

28. Dr. Ralph Wachter

ONR
Arlington, VA

29. David Wirth
N641
Arlington, VA

30. Daniel Wolf

NSA
Fort Meade, MD

31. CAPT Robert Zellman
CNO Staff N614
Arlington, VA

32. Dr. Kay G. Schulze

United States Naval Academy
Annapolis, MD

33. Dr. Cynthia E. Irvine

Naval Postgraduate School
Monterey, CA

34. Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

250

35. Trevor J. Baumgartner
Student, Naval Postgraduate School
Monterey, CA

36. Matthew D.W. Phillips
Student, Naval Postgraduate School
Monterey, CA

